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Abstract 

Background  Ultrasonic echocardiography is commonly used for monitoring myocardial dysfunction. However, it has 
limitations such as poor quality of echocardiography images and subjective judgment of doctors.

Methods  In this paper, a calculation model based on optical flow tracking of echocardiogram is proposed for the 
quantitative estimation motion of the segmental wall. To improve the accuracy of optical flow estimation, a method 
based on confidence-optimized multiresolution(COM) optical flow model is proposed to reduce the estimation errors 
caused by the large amplitude of myocardial motion and the presence of “shadows” and other image quality prob-
lems. In addition, motion vector decomposition and dynamic tracking of the ventricular region of interest are used to 
extract information regarding the myocardial segmental motion. The proposed method was validated using simula-
tion images and 50 clinical cases (25 patients and 25 healthy volunteers) for myocardial motion analysis.

Results  The results demonstrated that the proposed method could track the motion information of myocardial 
segments well and reduce the estimation errors of optical flow caused due to the use of low-quality echocardiogram 
images.

Conclusions  The proposed method improves the accuracy of motion estimation for the cardiac ventricular wall.

Keywords  Motion estimation, Segmental ventricular wall, Optical flow tracing, Ultrasonic echocardiogram

Background
Cardiovascular diseases (CVDs) are a major threat to 
human health and the leading cause of death  [1, 2]. 
Among them, ischemic heart disease is a CVD that 
accounts for the largest proportion  [3]. The main cause 
is myocardial ischemia due to insufficient blood and oxy-
gen supply to the heart muscle. Myocardial dysfunction 
seriously threatens human health and can lead to heart 
failure, myocardial infarction, and even sudden death [4, 
5]. Therefore, real-time analysis of myocardial function 
is crucial. In recent years, echocardiography has been 
extensively used in the diagnosis of myocardial dysfunc-
tion and the evaluation of viable myocardium due to its 
advantages of being noninvasive, safe, inexpensive, and 
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simple [6, 7]. Echocardiography can be used to obtain 
accurate data regarding the cardiac structure and myo-
cardial function and to accurately evaluate the myocar-
dial systolic function and cardiac ventricular wall motion. 
Therefore, echocardiography has a high application value 
in diagnosing CVDs and has become an important means 
for doctor-assisted diagnosis.

Abnormal myocardial function can be evaluated by 
performing a motion coordination analysis from the 
echocardiography measurements of the cardiac ventricu-
lar wall. Tissue Doppler imaging (TDI) and two-dimen-
sional speckle tracking imaging (2D-STI) are commonly 
used to evaluate cardiac ventricular wall motion. TDI 
is an echocardiographic technique used to measure 
the regional myocardial motion velocity and evaluate 
the myocardial motion status throughout the cardiac 
cycle [8], and 2D-STI is a quantitative evaluation method 
used for tracking the relative position and movement 
speed of the object of interest in a two-dimensional ultra-
sound image [9, 10]. Furthermore, myocardial functional 
coordination can be determined by measuring the time 
difference to the peak of systolic indicators in different 
left ventricular segments, which can be obtained using 
M-mode ultrasound, spectral Doppler, tissue Doppler, 
speckle tracking, and 3D ultrasound. However, TDI is 
affected by cardiac rotation, oscillation, and respiratory 
motion. 2D-STI also has some limitations, such as the 
requirement of high image quality and high resolution in 
time and space. If 2D-STI cannot accurately reflect the 
motion information of all cardiac segments in the same 
cardiac cycle, it may lead to tracking failure [10]. There-
fore, the existing assessment techniques of myocardial 
wall motion are affected by image quality, which cannot 
accurately track the myocardial segmental motion and 
reflect the law of myocardial segmental motion [11].

Segmental motion analysis is commonly used in clini-
cal practice to evaluate the regional left ventricular sys-
tolic function more effectively. The 17-segment model 
recommended by the American Society of Echocardi-
ography [6] is generally used for analyzing the coronary 
blood supply. However, it is difficult to detect ventricu-
lar wall motion in the 17th segment (apical cap), which is 
the apical region without a heart cavity; thus, the 16-seg-
ment model is often used in echocardiography analysis to 
evaluate the left ventricular wall motion, and the myocar-
dial function is evaluated by analyzing the strain between 
different segments. The optical flow model is suitable for 
realizing real-time and high-resolution segmental motion 
estimation. However, many challenges are encountered in 
segmental motion estimation when using this method to 
obtain an accurate dynamic optical flow field. For exam-
ple, a large amount of target motion is caused by rapid 
cardiac contraction, and the ordinary optical flow model 

based on pixel-level operation is unsuitable for large dis-
placements. Furthermore, the image quality of echocar-
diography is often poor, and the acquisition process is 
affected by the position of the subject, resulting in a cer-
tain degree of “shadow.” The missing information in the 
“shadow” areas causes estimation errors; blurred echo-
cardiography images also cause large estimation errors.

To quantify the dynamic characteristics of cardiac 
ventricular wall motion more accurately and evaluate 
the myocardial function more effectively, we proposed 
a segment motion analysis method based on multireso-
lution optical flow tracking in this paper. The proposed 
method employs multiresolution optical flow estima-
tion, motion vector decomposition, and dynamic track-
ing of the region of interest (ROI) to accurately calculate 
the dynamic motion field of each segment and obtain 
the myocardial segmental motion time curve. The con-
fidence-optimized multiresolution (COM) optical flow 
calculation method is based on a Gaussian pyramid 
algorithm and yields high-precision results of the myo-
cardial motion; in addition, confidence weight analysis 
is employed to improve the accuracy of the optical flow 
calculation. The echocardiographic images of 25 patients 
with myocardial dysfunction and 25 healthy volunteers 
were collected for verification. The results demonstrated 
that the proposed method is highly accurate, robust, 
and can be used for myocardial function coordination 
analysis. Therefore, the proposed method helps improve 
the quantification of cardiac ventricular wall segmental 
motion and realize a rapid clinical diagnosis.

Method
General framework
The collected echocardiogram images were used as the 
original image data, and the sequence of the same section 
was used as the data input to construct a cardiac ven-
tricular wall segmental motion estimation model based 
on the optical flow tracking of the echocardiogram. The 
overall process of the estimation method is illustrated in 
Fig. 1. First, the contour of the myocardium is manually 
segmented in the initial frame after the image sequence is 
preprocessed, and the myocardium segments in different 
sections are labeled using the 16-segment model recom-
mended by the American Society of Echocardiography. 
Next, the optical flow model based on COM analysis is 
used to calculate the cardiac ventricular wall segmental 
motion displacement distribution. The optical flow field 
is then calculated for each pair of consecutive frames. 
Next, the ROI of each segment is dynamically tracked 
according to the obtained motion field, and the myocar-
dium motion vectors in the region are decomposed into 
two orthogonal parts: the circumferential vector parallel 
to the internal myocardium boundary and the normal 
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vector perpendicular to the internal myocardium bound-
ary. Finally, the average displacement and motion curve 
of each segment are calculated based on the optical flow 
tracking of the echocardiogram to obtain the motion 
information of the myocardium segment and facilitate 
the analysis and evaluation of the coordination of the 
myocardium segment.

The COM optical flow calculation
The traditional optical flow model is used to calculate 
the surface luminance pattern for an image  [12, 13]. 
Based on the assumption of constant brightness and 
continuous time, the smoothness constraint is added to 
establish the relationship between image pixel motion 
and gray level. Echocardiographic myocardial motion 
is large, and echocardiography images contain sev-
eral artifacts (shadow areas). The traditional optical 
flow calculation method yields large errors for large 
displacements and shadow areas. Deep learning algo-
rithms based on neural networks have also been widely 
used in estimating the optical flow of moving targets 
in recent years, which can realize adaptive learning of 
moving targets and improve computation speed and 
efficiency. However, due to a large amount of training 
data, data labeling, and operations required, computa-
tional efficiency remains low [14–16]. To improve the 
motion estimation accuracy, the COM optical flow 
calculation method based on pyramid strategy  [17, 
18] has been proposed (Fig.  2), wherein two adjacent 
frames are stratified by different resolutions: large 

displacements are calculated at a low resolution, and 
small displacements are calculated at a high resolution. 
Starting from the top layer of the lowest resolution, the 
optical flow estimation results of the upper layer are 
fed back to the next layer as incremental optical flow 
(corrected motion) for the next layer of images; this 
process is repeated until the bottom of the pyramid is 
reached [19–23]. In the process of interlayer transmis-
sion of optical flow, image correction technology  [17] 
and confidence optimization screening strategy have 
been employed: the obtained motion field is used to 
reverse deform the second frame image to produce a 
new image that is closer to the first frame, and the new 
image and the first frame image are transferred to the 
first layer as image pairs for the incremental calcula-
tion of the optical flow field. In addition, the confidence 
weight matrix is dotted with the incremental optical 
flow field of this layer and then transferred to the lower 
layer. The main steps of optical flow calculation for two 
adjacent frames are as follows:

Step 1: The initial resolution is selected, the rule 
that the pyramid of image resolution is gradually 
increased to the original resolution is determined, 
and the optical flow field of the image sequence of 
different resolutions in each layer is obtained. The 
incremental form of the exponential function is 
selected for the pyramidal design.
Step 2: The confidence optimization weight is deter-
mined using the input echocardiogram image. The 

Fig. 1  Overall framework of segmental motion estimation for the cardiac ventricular wall
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approximation coefficients for wavelet analysis of 
each layer of the ultrasound image is used as the con-
fidence optimization weight after normalization.
Step 3: The image of the current layer is used to 
determine the optical flow field, the optical flow field 
of the current layer is employed as the incremental 
optical flow and multiplied with the confidence opti-
mization weight, and then the sampled results of the 
optical flow field of the previous layer are added to 
obtain the optical flow field of the current layer.
Step 4: Step 3 is repeated until the optical flow field 
under the original resolution (bottom of the pyra-
mid) is iteratively calculated and outputted as the 
final optical flow field.

The iterative calculation of the confidence coefficient is 
vital. The description of the grayscale image is the same 
as that of the color image. It provides information regard-
ing the distribution and characteristics of the overall and 
local chromaticity and luminance levels of the image. 

According to the definition of the optical flow model, 
the instantaneous change rate of gray level is defined at 
a specific coordinate point of a two-dimensional image 
as the optical flow vector, and the gray level of the image 
reflects the quality of the image. Due to shadow occlu-
sion, the gray level of the image between two frames 
changes; this affects the optical flow estimation accuracy. 
Wavelet analysis is a multi-scale and multi-frequency sig-
nal processing method that can decompose a signal into 
scale and frequency components [24]. Wavelet transform 
has the dual properties of time domain and frequency 
domain, allowing it to analyze the signal in both time 
domain and frequency domain at the same time. The 
signal’s effective information is extracted through multi-
scale analysis using scaling and shifting operations [25]. 
Image texture information is extracted using wavelet 
decomposition and reconstruction, as shown in Fig.  3. 
Figure 3 shows that the texture information of the origi-
nal ultrasound image can be retained by the first layer of 
wavelet reconstruction approximation coefficient. The 

Fig. 2  The COM optical flow calculation

Fig. 3  Wavelet decomposition and reconstruction. a The first layer of wavelet reconstruction approximation coefficient. b The second layer of 
wavelet reconstruction approximation coefficient



Page 5 of 15Liu et al. BMC Medical Imaging           (2023) 23:88 	

goal of this paper is to decrease the weight of calculation 
at low image information while increasing the weight of 
calculation at rich image texture.

The Gaussian pyramid principle states that the optical 
flow algorithm can obtain a large rough motion estimate 
on rough images while fine-tuning the motion to obtain 
a more accurate motion estimate on fine images. The 
results normalized by the wavelet approximation coef-
ficient matrix are used as confidence coefficients, which 
can be added to the iterative optical flow calculation pro-
cess in Pyramid to avoid directional error in high resolu-
tion optical flow calculations. Therefore, the confidence 
optimization matrix is introduced into the pyramid 
iteration process, and the incremental coefficient matrix 
under the corresponding resolution is synchronically 
updated, yielding a new optical flow field iteration for-
mula, as shown in Eq. (1):

where u and v are the optical flow velocity vectors calcu-
lated at the low resolution of the previous layer, s is the 
confidence optimization matrix, and du and dv are the 
incremental optical flow fields calculated at the resolu-
tion of the latter layer.

The affine technique was used to simulate the motion 
of myocardial contractions in five cases of echocardio-
graphic data. The left myocardium wall moved 2 pixels 
to the right, the right myocardium wall moved 2 pixels 
to the left, and the entire ventricular wall moved 1 pixel 

(1)
u = u+ s ∗ du
v = v + s ∗ dv

down. The calculation range was derived from the myo-
cardial ventricular wall region of interest. The accuracy of 
the calculated results was compared using different con-
fidence coefficients, and the results are shown in Table 1.

The proposed algorithm computes large motion at 
lower resolution levels and small motion at higher resolu-
tion levels. That is, at a lower resolution, the computed 
large motion optical flow is used to correct the current 
frame image, resulting in a similarity between the two 
frames. The two frames are then synchronized, the size 
is increased, and the small motion optical flow (incre-
mental optical flow) at a higher resolution is calculated. 
Therefore, the large-motion optical flow can be added to 
the incremental optical flow as the output of a specific 
layer of the pyramid. The "full resolution" optical flow 
output can be obtained through layer iteration.

Motion vector decomposition
The cardiac ventricular wall is shaped like an arch. Under 
the action of pumping blood, the motion of the cardiac 
ventricular wall can thus be decomposed into radial and 
circumferential components that are perpendicular to 
each other. In this paper, we used a vector separation 
method to better analyze the motion of the myocardium 
at different segments of the cardiac ventricular wall. At 
each point, two orthogonal components are obtained 
using this method. After the myocardium is manually 
segmented, the circumferential motion direction of each 
segment is assumed to be along the ventricular wall. 
The corresponding normal vector points to the direc-
tion of myocardial contraction. Based on the segmented 
myocardial segments, we connected the two endpoints 
on one side of the endocardium between each segment, 
and took the point where the horizontal direction of the 
midpoint of this line intersects with the endocardium of 
the segment as the center point of the segment (Fig. 4a). 
The line connecting the two endpoints of this segment 
along the clockwise direction of the myocardial wall was 

Table 1  The results of the calculations using different 
confidence coefficients

Confidence Coefficient RMSE AE

Normalized gray value matrix 0.321 0.947°

Normalized wavelet approximation coef-
ficient matrix

0.301 0.943°

Fig. 4  Motion vector decomposition of the cardiac ventricular wall: (a) Decomposition; (b) ROI vector field; (c) Radial normal vector; (d) Tangential 
circumferential vector
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taken as circumferential vector for the center point using 
Eq. (2), where ti is the circumferential vector of this seg-
ment, and vi is the point at the circumferential vector. 
The normal vector obtained by rotating it by 90° was 
taken as radial vector.

The motion information contained in the six myocar-
dial segments obtained after manual segmentation can 
be better observed after the second segmentation. After 
vector annotation and normalization of the 12 myocar-
dial segments, 12 circumferential and radial normalized 
motion vectors are obtained. Next, the ROI vector field 
is obtained from the ROI. The displacement data calcu-
lated using the optical flow model are separated using the 
methods as Eq. (2) to analyze the motion changes caused 
by the uneven force on the wall boundary. The ROI vec-
tor field and its motion vector decomposition are shown 
in Fig. 4b–d.

Dynamic tracking of the ROI
The relative position and shape of the cardiac ventricular 
wall change greatly during contraction. If the displace-
ment of each segment is always calculated with the myo-
cardial region in the initial state, the actual myocardial 
position will not match the ROI when the myocardium 
contracts to a certain state, resulting in large errors in the 
estimation results of segment displacement, as shown in 
Fig. 5(a) and (b).

To better track the motion of each segment of the 
myocardium, we adopted a dynamic tracking algorithm 
for the ROI of the cardiac ventricular wall to ensure 
that the ROI is consistent with the actual wall region. 
The optical flow vector is obtained by performing the 
optical flow estimation of two image frames. Then the 
image correction technology is used to map each pixel 

(2)ti =
vi − vi−1

�vi − vi−1�
+

vi+1 − vi

�vi+1 − vi�

in the initial ROI I to another plane under the action 
of the optical flow vector to generate a new ROI I’ and 
realize the optical flow tracking of the ROI.

Pixel correction is at the heart of image correction 
technology. The motion vector field w is calculated 
beforehand, and an affine transformation is applied to 
image I to correct it to a standard scale or angle, so the 
image I’ is obtained. An essential technology for real-
izing the multi-layer pyramid strategy is image cor-
rection technology, which obtains the velocity vector 
of each pixel after the optical flow calculation of the 
original image data. Then it generates a new image 
through reverse deformation of the image, which is 
compared with the original image to evaluate the algo-
rithm’s accuracy. Figure 6 depicts the image correction 
technique’s basic principles. The algorithm can greatly 
improve optical flow calculation efficiency while track-
ing fast-moving image pixels.

Evaluation methods
Optical flow error estimation method
The proposed motion evaluation algorithm yields a 
high accuracy in the velocity vector field computation 
from the cardiac ventricular wall segmental motion. 
The root mean square error (RMSE) and angular error 
(AE) are used as the evaluation index of velocity vec-
tor field accuracy. RMSE (Eq.  (3)) reflects the disper-
sion degree between the calculated velocity vector field 
and the actual velocity vector field  [26]. AE (Eq.  (4)) 
reflects the angle error between the calculated optical 
flow vector and the actual optical flow vector  [26, 27]. 
The calculation range of the optical flow error estima-
tion method is taken from the ROI of the myocardial 
segments.

Fig. 5  State diagram of the ROI before and after myocardial contraction: (a) Initial state of the myocardium; (b) State of myocardial contraction
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In Eq. (3), (ue, ve)T is the estimated velocity vector field 
of myocardial movement, 

(

ug , vg
)T is the actual velocity 

vector field of myocardial movement, N is the number of 
pixels contained in the ultrasonic echocardiogram, and i 
is the serial number of pixels. In Eq. (4), vg and ve are the 
actual optical flow vector and the calculated optical flow 
vector, respectively, and φE is the angular error between 
the calculated optical flow vector and the actual optical 
flow vector.

Estimation method of segmental motion displacement error
The cardiac ventricular wall segmental motion is the 
main index used to measure whether the myocardial 
function is abnormal. The strength of the segmental 
motion, and the amount of displacement are used as the 
evaluation index [28]. To evaluate the cardiac ventricu-
lar wall motion, the displacement error of each segment 

(3)

RNSE =

√

1

N

∑N

i

[

(

Ui
g −Ui

e

)2

+

((

Ui
g −Ui

e

))2
]

(4)∅E = arccos
(

vg − ve
)

can be determined using the displacement difference 
between the ROI and the actual position of the myocar-
dium during the dynamic tracking of the ROI, and the 
absolute displacement value and relative displacement 
error under different segments of cardiac ventricular 
wall motion are calculated. The displacement errors of 
different segments of the cardiac ventricular wall are 
quantified to reflect the abnormal motion of the cardiac 
ventricular wall segment.

The quantitative assessment of the cardiac ventricular 
wall segmental motion is highly significant in analyzing 
whether myocardial motion is abnormal. We experi-
mentally verified the accuracy of the proposed method 
by using the displacement error. In total, 50 clinical 
cases (25 patients with myocardial dysfunction and 25 
healthy volunteers) were selected for the experiment, as 
shown in Fig.  7. Displacement error analysis was per-
formed using the displacement difference between the 
ROI and the actual position of the myocardium during 
the dynamic tracking of the ROI, as shown in Fig. 8. The 
absolute displacement values and relative displacement 
errors under different segments of cardiac ventricular 
wall motion were calculated; the results are presented 
in Table 3.

Fig. 6  Image correction technology

Fig. 7  Myocardial images and ROI dynamic tracking experiment: (a) Segmented ROI; (b) Myocardial image data; (c) Results after superposition of 
the two
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Experiment
Experimental data
Color Doppler echocardiography images of 50 clinical 
cases (25 patients with myocardial motion abnormali-
ties and 25 healthy volunteers) collected during January 
2021–December 2021 were used as the experimental 
data. All imaging data were acquired in the bedside ultra-
sound (Philips EPIQ 7C cardiovascular ultrasound imag-
ing device) with X5–1 probe and a frequency range of 
1.0–5.0  MHz. The image dataset had a uniform fre-
quency of 50 Hz, a temporal resolution of 0.02 s, a spatial 
resolution ranging from 1.3 to 2.6, and a frame rate of 50 
frames per second. The image dataset used in this paper 
has a frame number that corresponds to the number of 
image frames in one cardiac contraction cycle, which is 
typically 9 to 13 frames. The patients were placed in the 
left decubitus position, and the probe was placed on the 
chest (between the second and fifth ribs) to observe the 
long axis of the left ventricle, two apical chambers, four 
apical chambers, and multiple short axis sections of the 
left ventricle. The myocardium wall motion was observed 

to check whether there was abnormal motion, focusing 
on the observation of the two chambers of the left ven-
tricle. Ultrasonic echocardiograms of the left ventricle of 
patients were collected to analyze the cardiac ventricular 
wall segmental motion. The proposed true value of myo-
cardial motion as simulated by affine transformation is 
referred to as the ground truth.

Myocardial motion
We estimated the segmental motion of the cardiac ven-
tricular wall. In one cardiac cycle, motion vector decom-
position was performed on the motion process of the 
cardiac ventricular wall from relaxation to contraction, 
and the ROI of the cardiac segments was dynamically 
tracked to better track the motion state of cardiac seg-
ments. The process of the left cardiac ventricular wall 
motion is illustrated in Fig. 9.

Segmentation
In this study, 25 patients with myocardial dysfunc-
tion were selected as the study group, and 25 healthy 

Fig. 8  ROI displacement error analysis method of cardiac ventricular wall segment: (a) In the case of no error; (b) In the case of error

Fig. 9  State diagram of cardiac ventricular wall motion: (a) Original myocardial state; (b) State of myocardial contraction; (c) State of myocardial 
relaxation
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volunteers were selected as the control group. The sys-
tolic period of cardiac ventricular wall motion was 
recorded, the radial displacement curve of cardiac 
segments was drawn, and the segmental motion was 
evaluated. The myocardium wall of the left ventricular 
two-chamber heart was manually segmented, first deter-
mining the points at the apex and base of the heart, and 
then measuring the side lengths of the apex and base. 
Finally, they were divided into three sections. Therefore, 
six segments were identified. One experienced sonogra-
pher manually segmented the myocardial contour, which 
was then verified by another sonographer of the same 
level. When the two sonographers’ segmentation results 
were inconsistent, a third sonographer was invited to cor-
rect the segmentation results, and the revised segmen-
tation results were considered the final results. In this 
study, myocardial segments were labeled using the Amer-
ican Society of Echocardiography’s 16-segment model. A 
total of 6 segments of the apical two-chamber view of the 
left ventricular were focused on myocardial wall motion. 

In this paper, 12 segments were obtained after secondary 
segmentation to better observe the motion information 
within the 6 segments. The segmentation process of car-
diac ventricular wall segments is depicted in Fig. 10.

Results
Segmental motion curves
The whole process of myocardial wall contraction and 
relaxation was simulated twice by image correction tech-
nique, and the displacement curves of each segment were 
obtained by calculating the mean displacement of pixels 
in the ROI of each segment of the myocardium, as shown 
in Fig. 11.. The 12 curves in Fig. 11 represent the radial 
displacement of each segment after direction separation. 
This curve reflects the overall displacement of each myo-
cardial segment and can be used to obtain the motion 
details inside the segment. The displacement curves 
drawn in the two cardiac cycles exhibited regular arches, 
which proves the accuracy of the proposed method.

Fig. 10  Segmentation of cardiac ventricular wall segments: (a) Myocardium contour; (b) Myocardial segmentation model; (c) Six segments of the 
Myocardium; (d) Twelve segments of the myocardium

Fig. 11  Radial displacement curve of cardiac ventricular wall motion
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Individual data of healthy volunteers and patients with 
myocardial abnormalities in the image dataset of this 
paper were selected for display. Figure  12 (a) and (b) 
show the curve of myocardial motion in patients with 
myocardial dysfunction and healthy volunteers, respec-
tively. After the direction separation of each segment, the 
motion amplitude of each segment in patients with myo-
cardial dyskinesia was smaller than that of healthy volun-
teers. It belonged to the weakened motion of the cardiac 
ventricular wall. Thus, the segmental motion curve can 
assist in detecting abnormal cardiac ventricular wall 
motion.

Comparison of optical flow errors
We validated the proposed method’s effectiveness and 
accuracy by comparing it to the Horn-Schunck(HS) opti-
cal flow model, Lucas-Kanade(LK) optical flow model, 
and Brox optical flow model using two indexes, RMSE 
and AE; the results are shown in Table 2. The parameters 
of the HS and LK optical flow models were used without 
tuning in the original paper. The proposed method and 
the Brox optical flow method are used to tune the param-
eters, and the RMSE error experiment is used to adjust 
the relaxation parameters. Furthermore, the proposed 
method improves the optical flow calculation process 
starting with the initial resolution selection and confi-
dence coefficient.

The proposed method yielded the lowest RMSE and AE 
values among all the optical flow models studied herein, 
thus, indicating that the proposed method has the high-
est computational accuracy.

Comparison of segmental motion displacement errors
We compared the segmental motion displacement errors 
in the patients with myocardial dysfunction with those in 
the healthy volunteers, as shown in Fig. 12. Displacement 
error analysis was performed using the displacement dif-
ference between the ROI and the actual position of the 
myocardium during the dynamic tracking of the ROI, as 
shown in Fig. 13. The average values of absolute displace-
ment and relative displacement error of myocardial wall 
motion in different segments of all healthy volunteers 
and patients with abnormal myocardial motion were cal-
culated (Table 3).

Comparison of optical flow computational efficiency
The calculation time of optical flow in each frame of an 
echocardiogram was compared in this paper to assess 
the computational efficiency of different algorithms, 
and the results are shown in Table 4. Table 4 shows that 
the proposed algorithm has a higher computational effi-
ciency than the Brox optical flow method, but it takes 
longer to compute than the HS optical flow method 

Fig. 12  Radial displacement curve during systolic cardiac ventricular wall motion: (a) Radial displacement curve of patients with abnormal 
myocardium; (b) Radial displacement curve of healthy volunteers

Table 2  Experimental results of the proposed algorithm, HS 
optical flow model, LK optical flow model, and Brox optical flow 
model

Algorithm Root mean square 
error (RMSE)

Angular error (AE)

HS optical flow 0.960 7.133°

LK optical flow 0.854 11.404°

Brox optical flow 0.532 7.802°

Proposed algorithm 0.257 3.587°
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and the LK optical flow method. This is because the HS 
optical flow method and the LK optical flow method do 
not employ a pyramid iteration strategy, resulting in a 
higher computational efficiency. In this paper, the num-
ber of pyramid iterations is reduced in comparison to 
the Brox optical flow method, improving computational 
efficiency.

Fig. 13  Radial displacement error curves of 12 segments of cardiac ventricular wall motion

Table 3  Absolute displacements and relative displacement errors in different segments of cardiac ventricular wall motion

Heart sarcomere section Study group of patients with myocardial dysfunction A control group of healthy volunteers

Displacement values (mm) Error (mm) Displacement values (mm) Error (mm)

Segment 1 upper end 2.857 1.112 3.565 1.124

Segment 1 lower end 1.638 1.215 2.345 1.221

Segment 2 top end 2.359 0.985 4.862 0.676

Segment 2 lower end 2.954 1.123 5.145 0.887

Segment 3 top end 0.745 2.054 1.314 1.421

Segment 3 lower end 1.349 1.456 2.945 0.965

Segment 4 top end 0.356 2.415 0.314 2.129

Segment 4 lower end 0.845 2.211 1.121 2.128

Segment 5 upper end 1.125 1.856 2.326 2.459

Segment 5 lower end 1.765 1.967 3.485 2.125

Segment 6 upper end 2.157 1.926 3.855 2.015

Segment 6 lower end 1.795 1.846 4.247 1.385

Table 4  Optical flow computational efficiency comparison 
results

Algorithm computation 
time(s)

HS optical flow 2.525 s

LK optical flow 4.902 s

Brox optical flow 10.576 s

Proposed algorithm 9.007 s
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Discussion
In the proposed method, multiresolution optical flow 
estimation is used to improve the estimation accuracy 
of the cardiac ventricular wall motion, and ROI dynamic 
tracking is used to ensure the accuracy of the motion 
curve of each segment. Next, the cardiac ventricular wall 
motion is decomposed into vectors, and the radial vector 
consistent with the motion direction of the cardiac ven-
tricular wall is selected for analysis. Finally, ROI dynamic 
tracking is performed to accurately calculate the motion 
characteristics of the myocardial segments. Simulation 
results demonstrated that the proposed method could 
improve the optical flow estimation accuracy. Further-
more, the proposed method was used to draw the myo-
cardial segment displacement curve and calculate the 
absolute displacement and relative displacement error 
under different segments of myocardial wall motion 
using actual data from patients with myocardial dysfunc-
tion and healthy volunteers. The results demonstrated 
that the estimation results obtained with the proposed 
method are robust. The RMSE and AE, as well as the 
absolute and relative displacement errors under different 
segments of cardiac ventricular wall segmental motion, 
were used to validate the proposed method’s accuracy. 
The proposed method resulted in the smallest RMSE and 
AE. Therefore, the proposed method can track a moving 
object quickly and can overcome the estimation error 
caused by poor image quality.

Shadowing
During echocardiography, because the clinician typically 
captures the ultrasound image in the patient’s left decu-
bitus position, rib occlusion often creates shadowing in 

the echocardiographic data. At low resolutions, the size 
of the shadow is relatively small, and the corresponding 
movement of the shadow can better reflect the overall 
movement of the myocardium in the region. At high res-
olutions, the calculation of the area with obvious bright-
ness is more accurate. In contrast, the calculation of the 
shadow area leads to errors in optical flow estimation due 
to the lack of information. In this paper, we proposed a 
confidence optimization method based on wavelet analy-
sis to reduce the shadow effect at high resolutions while 
retaining the optical flow distribution at low resolutions. 
The influence of the shadow area on optical flow estima-
tion is reduced after multiresolution optical flow esti-
mation. As shown in Fig. 14, we chose echocardiograms 
with local shadows and compared the results obtained 
using the proposed method to those obtained using the 
conventional method. After the addition of the wavelet 
approximation coefficient matrix, the weight of shad-
ows in the iterative process was relatively small, which 
reduced estimation errors caused by missing informa-
tion at high resolutions and solved the problem caused by 
shadow areas.

To simulate the effect of myocardial motion, we simu-
lated a U-shaped binary image and added a shadow to the 
right side of the ventricular wall to simulate myocardial 
contractile motion by using the warp operation. The left 
side of the simulated ventricular wall moved 2 pixels to 
the right, the right side of the ventricular wall moved 2 
pixels to the left, and the entire ventricular wall moved 1 
pixel downward. The optical flow field of simulated data 
for the cardiac ventricular wall with shadows was calcu-
lated using the HS optical flow model, the LK optical flow 
model, the Brox optical flow model, and the proposed 

Fig. 14  Estimation results of optical flow at local shadow areas: (a, c, e) and (g) Results without confidence optimization; (b, d, f) and (h) Results 
after confidence optimization
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method (Fig. 15). It could see that the error rate was high 
for the HS optical flow model and LK optical flow model. 
Moreover, the HS optical flow model, LK optical flow 
model, and Brox optical flow model all show orientation 
errors in the calculation of the "shadow" and the manual 
segmentation of the ROI. The results of the proposed 
method were superior to the other three methods. It can 
reduce the calculation error caused by missing informa-
tion at high resolution, effectively solve the problem of 
motion estimation error caused by shadows and thus 
yield improved estimation accuracy.

ROI dynamic tracking
When drawing the motion curve, the displacement of 
each segment represents the mean displacement of all 
pixels in the ROI corresponding to this segment. The 
actual displacement of each segment was estimated from 
the initial segmented image at the start of the experi-
ment; however, as the myocardium contracted, the actual 
position of each segment changed significantly from the 
initial position, resulting in errors in the final drawn dis-
placement curve. Therefore, in this paper, we proposed a 
dynamic ROI tracking method. To ensure high accuracy 
in the final segment displacement estimation, we used 
the warp operation to track the initial segmented images 
in real time. We used the normal ultrasonic echocardio-
gram data of a healthy volunteer to capture the process 
of myocardium from diastole to contraction in one car-
diac cycle. The ROI dynamic region tracking algorithm 
was used to track the entire cardiac ventricular wall, 
which can track the motion state of each segment of the 

myocardium well; thus, improving the estimation accu-
racy of cardiac ventricular wall segmental motion.

Resolution
To improve the estimation accuracy of the optical flow 
rate of cardiac ventricular wall segmental motion, we 
adopted a multiresolution analysis method to reduce the 
error; this approach requires selecting the original images 
to start the optical flow estimation after reducing them 
to different scale sizes. The experiment used 20 cases of 
cardiac hyperimage data to determine the optimal top 
pyramid size. The optical flow field was set to deform the 
image using image reverse warp operation to obtain the 
second image after deformation. The proposed optical 
flow model was then used to calculate the optical flow of 
cardiac ventricular wall motion between the two frames, 
and the error between the set optical flow field and the 
calculated optical flow field was compared at differ-
ent reduced sizes. The experimental comparison results 
revealed that, in most cases, the error was the smallest 
when 30% of the original image was selected.

In the clinical ultrasound image data acquisition pro-
cess, the relative position of the myocardium in the 
process of contraction and diastole changes due to the 
movement of the probe position by the doctor and the 
change in the patient’s position, resulting in errors in 
segmental motion estimation. Thus, it is necessary to 
further improve the image position correction to reduce 
the error. In future research, more cardiac cross-sections 
(such as the long axis of the left ventricle, four apical 
chambers, and multiple short axes of the left ventricle) 
need to be studied to calculate the myocardial segmental 
motion to improve the generalizability of the proposed 

Fig. 15  Optical flow field of cardiac ventricular wall simulation image with a shadow area added and optical flow distribution near the shadow 
area: (a)and (e) represent the HS optical flow model; (b) and (f) represent the LK optical flow model; (c) and (g) represent the Brox optical flow 
model; (d) and (h) represent the proposed method
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algorithm and for its extensive application in clinical 
practice.

Our research has some limitations in terms of man-
ual segmentation and ROI dynamic tracking. Currently, 
selecting the cardiac ventricular wall requires manual 
segmentation, which takes a significant amount of time 
and effort on the part of clinicians. Therefore, automatic 
intelligent segmentation is required to reduce clinician 
workload. Furthermore, the accuracy of optical flow 
calculation affects ROI dynamic tracking. If the image 
quality is too poor, optical flow calculation errors will 
accumulate, resulting in a large difference between the 
final result and the true value.

Conclusions
To solve the problems that ultrasonic echocardiogram 
is heavily dependent on the physician’s subjective judg-
ment and the large workload of myocardial motion 
abnormality identification, we proposed a method based 
on the optical flow tracking of echocardiogram by using 
multiresolution optical flow estimation, motion vector 
decomposition, and ROI dynamic tracking. In the pro-
posed method, first, the cardiac ventricular wall con-
tour is manually segmented, and myocardial segments 
are marked. Following that, the motion parameters of 
the cardiac ventricular wall segmental motion are com-
puted using multiresolution optical flow estimation. 
Finally, to accurately reflect the motion information of 
the myocardial segments, the displacement data of each 
myocardial segment are calculated using motion vector 
decomposition and ROI dynamic tracking. The results 
demonstrated that the proposed method could effec-
tively solve the problem of estimation errors caused by 
shadowing, improve the estimation accuracy of motion 
displacement, and can quantify cardiac ventricular wall 
segmental motion for the quantitative assessment of seg-
mental motion abnormalities and assist in ultrasound 
monitoring or diagnosis.

To provide clinicians with a foundation for quanti-
tative evaluation, the results of healthy and unhealthy 
patients can be qualitatively analyzed in conjunction 
with the quantitative analysis results of the algorithm 
in this paper. The segmental motion of the myocar-
dial wall was clinically graded into different ranges. If 
the average displacement of the ventricular wall seg-
ments was greater than 5 mm, it was classified as grade 
0, indicating normal or hyperactive ventricular wall 
motion. If the average displacement of the ventricular 
wall segments was between 2 and 5 mm, it was classi-
fied as grade 1, indicating reduced wall motion. Grade 
2 was defined as the disappearance of ventricular wall 
motion if the average displacement of the segments of 
the ventricular wall was between 0 and 2 mm. The rest 

were grade 3 anomalous wall motion or paradoxical 
motion. The displacement calculation error of segment 
2 is small in this experiment, and the reference value 
is strong. Segments 3 and 4 have a small displacement 
in the assumed motion direction, and the reference 
value is low. The remaining segments can serve as sup-
plemental evaluation methods. In the future, the algo-
rithm could be used in clinical practice. The grading 
of the displacement value can help clinicians conduct 
qualitative analysis to determine whether the patient 
has a myocardial abnormality and the severity of the 
abnormality.

According to sonographers’ and clinicians’ experience 
in bedside operation, in the daily diagnosis and treatment 
of ICU patients, most mechanical ventilation patients 
have no significant effect on the stability of image acqui-
sition, with the exception of a few terminal or severe 
patients who require large parameters to assisted ventila-
tion. Stable images can be obtained in this paper, and the 
algorithm can assist non-experienced ultrasound medical 
workers in identifying abnormal myocardial motion.
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