Zhou et al. BMC Medical Imaging (2023) 23:140
https://doi.org/10.1186/512880-023-01076-5

BMC Medical Imaging

®

Point-wise spatial network for identifying =
carcinoma at the upper digestive

and respiratory tract

Lei Zhou'", Huaili Jiang'!, Guangyao Li', Jiaye Ding', Cuicui Lv'!, Maoli Duan®3, Wenfeng Wang?,

Kongyang Chen**, Na Shen'” and Xinsheng Huang'"

Abstract

sive model has been established for these regions.

regions.

racy of 96.3%.

Problem Artificial intelligence has been widely investigated for diagnosis and treatment strategy design, with some
models proposed for detecting oral pharyngeal, nasopharyngeal, or laryngeal carcinoma. However, no comprehen-

Aim Our hypothesis was that a common pattern in the cancerous appearance of these regions could be recognized
and integrated into a single model, thus improving the efficacy of deep learning models.

Methods We utilized a point-wise spatial attention network model to perform semantic segmentation in these
Results Our study demonstrated an excellent outcome, with an average mloU of 86.3%, and an average pixel accu-

Conclusion The research confirmed that the mucosa of oral pharyngeal, nasopharyngeal, and laryngeal regions may
share a common appearance, including the appearance of tumors, which can be recognized by a single artificial intel-
ligence model. Therefore, a deep learning model could be constructed to effectively recognize these tumors.
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Introduction

In recent years, artificial intelligence (AI) technology has
made significant strides in various fields of medicine,
including the diagnosis of oral cancer [1, 2], dermatol-
ogy disease [3], ocular fundus disease [4], lung cancer
[5], pathological slices diagnosis [6] even the prediction
of gene editing results [7]. Al is playing an increasingly
important role in medicine, surpassing what was previ-
ously possible [8]. It may soon replace tedious or danger-
ous work with machines equipped with Al systems. Early
detection of cancer has always been associated with a
good prognosis. Therefore, detecting cancer in its early
stages is crucial [1], regardless of whether it is done in the
hospital or through self-diagnosis.
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Head and Neck Squamous Cell Carcinoma (HNSC)
is a common cancer worldwide [9]. Most HNSC cases
occur in the mucosa of the nasopharynx, oral pharynx,
hypopharynx, or larynx, which we defined as regional
upper digestive and respiratory tract (rUDRT) here.
Cancer in these regions can have a profound impact on
patients’ quality of life, causing dyspnea, dysphagia, and
even voice loss. Early diagnosis and intervention can sig-
nificantly improve patients’ prognosis. Therefore, early
and accurate detection of cancer in the rUDRT mucosa
is crucial [10].

Several excellent AI diagnostic models have been
developed to detect oral cancer [1, 2, 11-14]. How-
ever, few models have been used to diagnose cancer in
rUDRT mucosa using a single model. Mohammed et al.
reviewed the literature, and summarized the diagnosis
of nasopharyngeal carcinoma; finding that most studies
focus on predicting the prognosis of NPC using machine
learning techniques [15]. They also constructed a deep
learning model to detect NPC in microscopic image
[16]. Endoscopic images-based deep learning model
were also developed to detect nasopharyngeal carcinoma
with good results [17, 18]. Uthoff et al. proposed an oral
and oral pharyngeal cancer detection model, as well as
a portable image collection tools to aid in self-diagnosis
[14, 19]. Recently, Hao et al. established a deep learning
model called DCNN to classify the tissues from normal,
pre-cancerous, and benign ailments. The model had a
sensitivity and specificity of 72.0% and 94.8%, respec-
tively, and an area under curve (AUC) of 0.953[20]. Some
benign disease diagnostic models have also been devel-
oped for mucosa diseases of the oral pharynx, such as
the strep throat identification model [21], which can dis-
tinguish bacterial from viral infection of the throat. Van
Staveren et al. constructed a diagnostic model for oral
leukoplakia [22].

However, the machine learning method has rarely been
applied in rUDRT using a single neural network model
to identify cancers in all rtUDRT mucosa. The model
constructed to detect nasopharyngeal carcinoma was
only used to identify nasopharyngeal cancer rather than
laryngeal cancer, etc. Tumors in this region share com-
mon characteristics, such as irregular shape, ulceration,
roughness, and tendency to bleed; while normal tissue
has a smooth appearance and texture. These features
suggest that the machine learning method may be suit-
able for identifying cancerous regions in an integrated Al
model. This can facilitate self-monitoring of tumors in
these regions, which may improve early tumor diagnosis.
A new point-wise spatial attention network using seman-
tic segmentation, was adopted to do the cancerous region
detection [23]. Here we reported the detailed design and
training process.
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Contributions:

1. The research in this article has confirmed that the
mucosa of rUDRT shares a common appearance, as
well as the tumor appearance which can be recog-
nized by a single integrated deep learning neural net-
work model.

2. The finding implies that an integrated Al model
could be constructed to detect tumors in the rUDRT
region.

3. The finding here facilitate a pan cancer detection
deep learning neural network model, with the com-
bination with portable self-examination equipments,
this may facilitate the easily early diagnosis of the
carcinoma in this region.

Materials and methods

Image data collection and data augmentation

To conduct this study, 1742 cancerous endoscopic images
from 101 patients were collected and labeled by two
experts in this field. These patients were all histologi-
cally proved squamous carcinoma. And 6473 normal or
benign lesion images of rtUDRT from 200 patients were
prepared. Before model training, we also carried out data
enhancement on the cancerous images through image
rotation, scaling, shearing, panning, and image flipping,
etc. The cancerous endoscopic images increased from
1742 to 8725.

During endoscopy, endoscopists always took many
images of the tumor from different angles to achieve a
comprehensive perception. As a result, one case may be
taken several images from different positions, which was
similar to the data augmentation process. As a result,
these similar images were all adopted, labeled and used in
the training, testing as well as validation process.

During machine learning, many algorithms and models
have a very basic assumption that the data distribution is
homogeneous. If we apply the algorithm directly to the
above data, in most cases we will not achieve the desired
result because the uneven distribution that the non-
malignant images are several times more than malig-
nant tumor. Therefore, we need to enhance the data for
the cancerous images, so that the number of cancerous
images is about the same or even more than the num-
ber of benign images, as the main objective of our model
training is to identify the cancerous areas of the images.
We eventually expanded the number of cancerous images
to 8,725 by randomly flipping them and other common
data enhancement methods.

We train the PSANet model for image segmentation
of rUDRT medical images. The core idea of this model
is to use the spatial attention mechanism to enhance
the feature representation ability of CNN model at the
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pixel level, so as to achieve more accurate scene analy-
sis results.

With adaptive predictive attention graphs, each posi-
tion in the feature map is connected to all other posi-
tions to gather a variety of information near and far
away. In addition, to fully understand the complex
scene, we designed a bi-directional information propa-
gation path. Each location collects information about
all other locations to help predict itself, and vice versa,
and then information from each location can be glob-
ally distributed to help predict all other locations.
Finally, the bi-directional aggregated context informa-
tion is fused with local features to form the final repre-
sentation of complex scenes.

Selection of models

In order to find a semantic segmentation model that
performs well on the cancer region detection task, we
have selected some classical semantic segmentation
models for comparison experiments, such as Accu-
racy (Acc) and IOU. Acc can be understood as the
percentage of pixels in an image that are correctly clas-
sified, and the class imbalance problem occurs when
one or some classes dominate in the data, while some
other classes are only a small part of the image. At
this point, Acc is not able to evaluate the performance
of the model very well, as a good performing model
must be able to have a high accuracy rate for all classes
trained. Therefore, this paper also introduces the evalu-
ation metric IOU, which is simply the area of overlap
between predicted segmentation and live annotation
divided by the joint area between predicted segmenta-
tion and live annotation. The range of this metric is 0-1
(0—100%), with 0 indicating no overlap and 1 indicating
a fully overlapping segmentation.

In Table 1, mAcc and mloU are calculated separately
for each category and then averaged by category. As
shown in Table 1, The mIOU and mAcc in PSANet are
86.83 and 92.38, receptivity, outperforming than other
models. The basic reason is that the PSANet model
is more reasonable. By using the spatial relationship

Table 1 Model training results

Method miOU mAcc
FCN-UNet 63.93 69.15
PSPNet 86.6 91.92
Deeplabv3 86.53 90.96
EMANet 80.69 88.24
PSANet 86.83 9238
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between points to enhance the ability of feature repre-
sentation, PSANet has higher efficiency and accuracy
than other existing methods.

The main models involved in the comparison experi-
ments are: FCN-UNet, PSPNet [24], DeepLabv3 [25],
EMANet [26] and PSANet [23]. The FCN-UNet model
combines the features of the very classical FCN [27] and
UNet [28] in the development of semantic segmentation
techniques, with the symmetric structure of UNet for the
feature extraction part of the model and the structure of
FCN for the decoupling head part. The PSPNet frame-
work is mainly based on the FCN approach and provides
a pyramid pooling module for fusing features at differ-
ent levels to achieve a fusion of semantics and details.
DeepLabv3 not only improves the ability of the model to
capture contextual information through the Atrous Spa-
tial Pyramid Pooling module, but also uses Conditional
Random Field as a post-processing tool to make image
boundary segmentation more accurate. EMANet [26]
and PSANet are attention-based semantic segmentation
models that improve the model’s ability to capture global
information by introducing a self-attentive mechanism.
In this paper, we use MMSegmentation [29], an open
source target detection framework from Shang Tang
Technology, which basically includes the mainstream
semantic segmentation algorithms. In order to ensure a
fair comparison, we use the same dataset and pre-train-
ing weights, and set the same hyperparameters such as
training times and input image sizes. The experimental
results are shown in Table 1 below, from which it can be
concluded that PSANet performs better for cancer region
detection on rUDRT images.

Hence, a point-wise spatial attention network (PSANet)
was adopted to address this study [23], which can aggre-
gate long-range contextual information in a flexible and
adaptive manner. This model was constructed by Zhao
et al. at 2018, which achieved top performance on various
competitive scenes parsing datasets, including ADE20K,
PASCAL VOC 2012, and Cityscapes, demonstrating its
effectiveness and generality [23]. The backbone of this
model was ResNet [30], which was the champion in
the competition ImageNet 2015. In this study transfer
learning was used to detect the cancerous region of the
rUDRT by using PSANet.

Training process and environment setting

To test this model and validate our hypothesis, 8725
labeled tumor images and 6473 normal mucosa images
of the rUDRT were prepared. These images were labeled
by the Labelme (v4.2.9) software, which was used to tell
the model which part of the image was the tumor region,
where the masks have a value of 0 for pixels considered to
be normal, and a value of 1 for pixels of being cancerous.
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Table 2 The image split in this study

Training Testing Validation Total
Cancer 6979 583 1163 8725
Normal 5179 431 863 6473
Table 3 Training results
Method mlOU mAcc
PSANet 86.83 92.38
PSANet+ Auxiliary Loss 86.25 96.3

The image dataset was constructed according to the VOC
2012 semantic segmentation format. Among all of the
15198 images, 80% were randomly selected for training
and the rest 20% were randomly selected as validation
and testing set, among which 1/3 was set as testing, the
other 2/3 was set as validation set. The details of the split
were listed in Table 2.

All images were resized to 480x480 pixels. The color
channel was converted to RGB and the pixel values of all
the three channels were standardized to a floating-point
number between 0 and 1. Then the pixel values are nor-
malized by the following formulation (1).

Pinput = % (1)

where pjupy: is the input pixel value to the PSANet, p is
the current pixel value,pyeqn = [0.485,0.456,0.406], and
0 = [0.229,0.224,0.225] [23]. At last the model was sub-
ject to training process. We have several model training
parameter in the training process. For example, we use
the Adam as the optimizer, where the learning rate is
set to 2 x 1074, the decay rate is set to 6 x 1075, and the
batch size is set to 8.
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In order to improve the model training, we tried to
add auxiliary losses to the original model structure of
PSANet, and the training results are shown in Table 3.
From the results, although the mIOU values decreased,
our improvement did have the effect of improving the
accuracy of the model, increasing from 92.38 to 96.3. The
training was conducted with the PyTorch deep learning
framework. The total number of epochs was 50, where
the total number of iterations was 27450. The total train-
ing time was about 24 h on an Ubuntu 18.04 system by
using an NVIDIA Tesla V100 (32 G memory). Figure 1
illustrated the architecture of the PSANet used in this
study.

Results

Validation process

After the training process, 2026 labeled validation images
were loaded to validate the model’s accuracy. Figure 2
illustrated the predicted masks compared with the pre-
vious manually labeled actual masks by two experts
in this field. The first column illustrated the original
images derived from the endoscopy of rUDRT. The pre-
dicted masks overlaid on the top of the original images
were illustrated in the second column. The third column
showed the manually labeled mask overlaid on the top of
the original images. The comparison of predicted masks
with the manually labeled actual masks in the last two
columns was made by two experts in this field.

Because there are many types of equipment in the
clinical work, the image tone or color style may be dif-
ferent among each other. Figure 2. listed the three image
sources, the first row images were captured by XION
soft endoscope, the 2, 3, and 4 rows were captured by
XION rigid endoscope, and the 5 row images were cap-
tured by AOHUA soft endoscope. All endoscopic images
were captured from each patient under local anesthesia.
Standard white light was used during image capture. All
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Fig. 1 Architecture of the PSANet [23] used in this study
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Predicted mask Original mask

Fig. 2 The predicted masks and comparison with the manually constructed masks with the Labelme software

the three source images were pulled in the training pro-
cess to enhance the robustness of the model [20].

The accuracy of the proposed model in performing
rUDRT cancer detection was evaluated using two crite-
ria, namely the sensitivity as in Eq. (2) and the specificity
as in Eq. (3). The semantic segmentation was evaluated
by mloU as in Eq. (4) and average pixel accuracy.

S itivit s 2

ensiLv = ——

nsitivity TP+ EN 2)

Specificit N 3
eclficily = ————=

PENEY = IN ¥ FP ®)

mloll — maSksegmenmtion N mask gy @)

maSksegmentation U mask g5

where TP denoted true positive, TN denoted true nega-
tive, and FP and FN denoted false positive and false nega-
tive, respectively. The masksegmentation denoted the mask
predicted by model and the mask;,,;;, was the true mask.
The calculated sensitivity was 94.39% and the specificity
was 98.68%. Figure 3 is the receiver operating character-
istic curve (ROC), indicted that the AUC is 0.97. The cal-
culated average mloU was 86.25%, and the average pixel
accuracy was 96.3%. The true positive or negative and
predicted positive or negative data was listed in Table 4.
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Fig. 3 The ROC curve of the PASNet model used in this study

Table 4 The false positive and false negative images

True positive True negative

Predicted positive 202 2
Predicted negative 12 150




Zhou et al. BMC Medical Imaging (2023) 23:140

Additional validation

After training and validation, in order to guarantee the
independency between the training set and the testing
set, other new endoscopic rtUDRT images from clinically
proven carcinoma were loaded to do the validation step.
The prediction results were illustrated in Fig. 4. show-
ing a well match with the cancerous contours labeled by
experts in this field. The first column contained the origi-
nal images; the second column illustrated the predicted
masks overlaid on the top of the original images. And the
third column was the masks predicted by this model.

Discussion

The images choosing and labeling

Medical image research using machine learning meth-
ods often suffers from a lack of training images. To
address this, various augmentation strategies such as
rotation and cropping have been used in the training of
deep neural networks [20]. In this study, during exami-
nation, endoscopists took multiple images from differ-
ent positions of a carcinoma case, which were selected
except for the blurred ones. The goal of the study was
to recognize the carcinoma as the region of interest
(ROI), so the precise cancerous region was labeled.

Origin

Predicted
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Images from at least three different endoscopes were
chosen to capture images of enrolled patients, result-
ing in training images with varying tone and size, which
could enhance the model’s robustness [20].

The prediction accuracy

The prediction accuracy was evaluated using four met-
rics: sensitivity, specificity, average mloU, and aver-
age pixel accuracy. Xiong et al. reported a sensitivity
of 72.0%, specificity of 94.8%, and an AUC of 95.3% in
detecting laryngeal cancer from pre-cancerous lesions,
[20]. Li et al. constructed a deep learning neural net-
work to recognize the nasopharyngeal carcinoma,
achieving a sensitivity of 91.3%, specificity of 83.1%,
and an overall accuracy of 88.7% [17]. In the current
study, the sensitivity was 94.4% and specificity was
98.7%, while the mIoU score was 86.3%, and the aver-
age pixel accuracy was 96.3%. The PSANet used in this
study effectively aggregated information with global
attention maps, capturing long-range contextual infor-
mation effectively and improve scene parsing perfor-
mance [23]. The results demonstrate the key role of
context information for image understanding [23].

Mask

Hypopharynx Oral pharynx

Larynx

Nasopharynx

Fig. 4 The predicted carcinoma region masks of the rUDRT carcinoma using thePSANet
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Limitations

Limitations of the study include the collection of images
from a single tertiary care center, insufficient diversity
and number of endoscopic images, and the lack of clas-
sification from other precancerous lesions. Future studies
should collect and analyze multicenter images and pro-
vide classification processes, such as differentiating can-
cer from benign tumors or infections like polyps, cysts,
or edema. Additionally, finding a combination method of
the AI model with a portable self-diagnosis device would
be beneficial.

The implication to the model design and application

The transfer learning method of retraining a previously
trained deep neural network model with the endoscope
images of rUDRT regions proved effective in this study.
The PSANet model was able to recognize cancerous
regions of rUDRT carcinoma, suggesting that an inte-
grated Al model can be constructed to detect tumors
in these regions. Previous models were designed to rec-
ognize different regions separately. However, this study
demonstrated that carcinomas in these regions share
common visual characteristics that could be utilized to
design an integrated Al model, reanimating huge expec-
tations for future applications. This pan-cancer detection
model, combined with portable self-examination equip-
ment [19], could facilitate the early diagnosis of carcino-
mas in the rtUDRT region.

Conclusion

This research confirms that the mucosa of rUDRT has
a common appearance, including the appearance of
tumors, which can be recognized by a single deep learn-
ing neural network model. This suggests that an inte-
grated Al model could be designed to detect tumors in
these regions, leading to the development of a pan-can-
cer detection deep learning neural network model in the
future. This could also extend to other mucosa cancer.

In practice, this could facilitate the self-monitor of
tumors in these regions, improving the early detection
of tumors. Portable image collection tools aid in self-
diagnosis [14, 19]. With the development of a pan-can-
cer detection model, monitoring of mucosa cancer in
the rUDRT region could be improved. The advancement
of portable video laryngoscopes may also facilitate self-
diagnosis in the future. All of these developments hold
promise for improving the early diagnosis of the rUDRT
cancer.

Acknowledgements
Thanks should be given to all the patients that contribute to the image
collection.

Page 7 of 8

Authors’ contributions

Lei Zhou, Huaili Jiang and Wenfeng Wang did most of the work of model con-
struction and prepared the manuscript. Guangyao Li,Jiaye Ding and CuicuilLv
did the image collection, Kongyang Chen, MaoliDuan and Xinsheng Huang
gave valuable opinions and guides to this work, Na Shen and Xinsheng Huang
did the model labeling work.

Funding

This study is supported by the National Natural Science Foundation of China
(82000980, 61802383); the Innovation Foundation of Zhongshan Hospital
affiliated to Fudan University (2020ZSCX13); the Shanghai Pujiang Program
(18PJD004); the Research Project of Pazhou Lab for Excellent Young Scholars
(PZL2021KF0024); Guangzhou Basic and Applied Basic Research Foundation
(No. 202201010330, No. 202201020162); the Research on the Supporting Tech-
nologies of the Metaverse in Cultural Media (No. PT252022039).

Availability of data and materials
The datasets used and/or analysed during the current study available from the
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study was approved by the institutional review board of Zhongshan Hos-
pital Fudan University (B2021-582). Subjects have given their written informed
consent. All methods were carried out in accordance with relevant guidelines
and regulations.

Consent for publication
Not applicable.

Competing interests
None.

Received: 12 October 2022 Accepted: 7 August 2023
Published online: 25 September 2023

References

1. LuJ, Sladoje N, Runow Stark C, Darai Ramqvist E, Hirsch J, Lindblad J. A
deep learning based pipeline for efficient oral cancer screening on whole
slide images. Image Analysis Recognition. 2020. p. 249.

2. Bhandari B, Alsadoon A, Prasad PWC, Abdullah S, Haddad S. Deep learn-
ing neural network for texture feature extraction in oral cancer: enhanced
loss function. Multimedia Tools Appl. 2020;79:27867.

3. Tschandl P, Codella N, Akay B, Argenziano G, Braun R, Cabo H, Gutman
D, Halpern A, Helba B, Hofmann-Wellenhof R, Lallas A, Lapins J, Longo C,
Malvehy J, Marchetti M, Marghoob A, Menzies S, Oakley A, Paoli J, Puig
S, Rinner C, Rosendahl C, Scope A, Sinz C, Soyer H, Thomas L, Zalaudek |,
Kittler H. Comparison of the accuracy of human readers versus machine-
learning algorithms for pigmented skin lesion classification: an open,
web-based, international, diagnostic study. Lancet Oncol. 2019;20:938.

4. Varadarajan A, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra
R, Keane P, Corrado G, Peng L, Webster D. Deep learning for predicting
refractive error from retinal fundus images. Invest Ophthalmol Vis Sci.
2018;59:2861.

5. Ardila D, Kiraly A, Bharadwaj S, Choi B, Reicher J, Peng L, Tse D, Etemadi M,
Ye W, Corrado G, Naidich D, Shetty S. End-to-end lung cancer screening
with three-dimensional deep learning on low-dose chest computed
tomography. Nat Med. 2019;25:954.

6. Niazi M, Parwani A, Gurcan M. Digital pathology and artificial intelligence.
Lancet Oncol. 2019;20:e253.

7. Leenay R, Aghazadeh A, Hiatt J, Tse D, Roth T, Apathy R, Shifrut E, Hultquist
J,Krogan N, Wu Z, Cirolia G, Canaj H, Leonetti M, Marson A, May A, Zou
J. Large dataset enables prediction of repair after CRISPR-Cas9 editing in
primary T cells. Nat Biotechnol. 2019;37:1.

8. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J
Med. 2019;380:1347.



Zhou et al. BMC Medical Imaging

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

(2023) 23:140

Siegel R, Miller K, Jemal A. Cancer statistics, 2019. CA Cancer J Clin.
2019,69:7.

Mohammed MA, Ghani MKA, Hamed RI, Ibrahim DA. Analysis of an
electronic methods for nasopharyngeal carcinoma: Prevalence, diagnosis,
challenges and technologies. J Comput Sci. 2017,21:241.

. Chan C,Huang T, Chen C, Lee C, Chan M, Chung P. Texture-map-based

branch-collaborative network for oral cancer detection. IEEE Trans
Biomed Circuits Syst. 2019;13:766.

Heidari A, Pham T, Ifegwu |, Burwell R, Armstrong W, Tjoson T, Whyte

S, Giorgioni C, Wang B, Wong B, Chen Z. The use of optical coherence
tomography and convolutional neural networks to distinguish normal
and abnormal oral mucosa. J Biophotonics. 2019;13:1.

Jeyaraj P, Samuel NE. Computer-assisted medical image classification

for early diagnosis of oral cancer employing deep learning algorithm. J
Cancer Res Clin Oncol. 2019;145:829.

Uthoff R, Song B, Sunny S, Patrick S, Suresh A, Kolur T, Keerthi G, Spires O,
Anbarani A, Wilder-Smith P, Kuriakose M, Birur P, Liang R. Point-of-care,
smartphone-based, dual-modality, dual-view, oral cancer screening
device with neural network classification for low-resource communities.
PL0oS One. 2018;13:2207493.

Mohammed MA, Abd Ghani MK, Hamed R, Ibrahim DA. Review on naso-
pharyngeal carcinoma: concepts, methods of analysis, segmentation,
classification, prediction and impact: a review of the research literature. J
Comput Sci. 2017;21:283.

Mohammed MA, Abd Ghani MK, Hamed RI, Ibrahim DA, Abdullah MK.
Artificial neural networks for automatic segmentation and identification
of nasopharyngeal carcinoma. J Comput Sci. 2017,21:263.

Li G, Jing B,Ke L, Li B, Xia W, He C, Qian C, Zhao C, Mai H, Chen M. Devel-
opment and validation of an endoscopic images-based deep learning
model for detection with nasopharyngeal malignancies. Cancer Com-
mun. 2018;38:1.

Abd Ghani MK, Mohammed MA, Arunkumar N, Mostafa SA, lbrahim DA,
Abdullah MK, Jaber MM, Abdulhay E, Ramirez-Gonzalez G, Burhanud-
din MA. Decision-level fusion scheme for nasopharyngeal carcinoma
identification using machine learning techniques. Neural Comput Appl.
2020;32:625.

Uthoff R, Song B, Sunny S, Patrick S, Suresh A, Kolur T, Gurushanth K,
Wooten K, Gupta V, Platek M, Singh A, Wilder-Smith P, Kuriakose M, Birur
P, Liang R. Small form factor, flexible, dual-modality handheld probe for
smartphone-based, point-of-care oral and oropharyngeal cancer screen-
ing. J Biomed Opt. 2019;24:1.

Xiong H, Lin B Yu J,Ye J, Xiao L, Tao Y, Jiang Z, Lin W, Liu M, Xu J, Hu W,
LuY, Liu H, LiY, Zheng Y, Yang H. Computer-aided diagnosis of laryngeal
cancer via deep learning based on laryngoscopic images. EBioMedicine.
2019;48:92.

Askarian B, Yoo S, Chong J. Novel image processing method for detect-
ing strep throat (streptococcal pharyngitis) using smartphone. Sensors.
2019;19:1.

Van Staveren H, Van Veen R, Speelman O, Witjes M, Star W, Roodenburg
J. Classification of clinical autofluorescence spectra of oral leukoplakia
using an artificial neural network: a pilot study. Oral Oncol. 2000;36:286.
Zhao H, Zhang Y, Liu S, Shi J, Loy CC, Lin D, Jia J. PSANet: Point-wise spatial
attention network for scene parsing. European Conference on Computer
Vision. 2018. p. 270.

Hengshuang Z, Jianping S, Xiaojuan Q, Xiaogang W, Jiaya J. Pyramid
scene parsing network. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017. p. 6230.

Chen L, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution
for semantic image segmentation. 2017.

Li X, Zhong Z,Wu J, Yang Y, Liu H. Expectation-maximization attention
networks for semantic segmentation. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 2019

Dai J, LiY, He K, Sun J. R-FCN: object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing
Systems, vol. 2016

Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for
Biomedical Image Segmentation. CoRR. abs/1505.04597. 2015.
MMSegmentation: OpenMMLab semantic segmentation toolbox and
Benchmark. https://github.com/open-mmlab/mmsegmentation.

Page 8 of 8

30. HeK, Zhang X, Ren 'S, Sun J. Deep residual learning for image recogni-
tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016. p. 770.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://github.com/open-mmlab/mmsegmentation

	Point-wise spatial network for identifying carcinoma at the upper digestive and respiratory tract
	Abstract 
	Problem 
	Aim 
	Methods 
	Results 
	Conclusion 

	Introduction
	Contributions:

	Materials and methods
	Image data collection and data augmentation
	Selection of models
	Training process and environment setting

	Results
	Validation process
	Additional validation

	Discussion
	The images choosing and labeling
	The prediction accuracy
	Limitations
	The implication to the model design and application

	Conclusion
	Acknowledgements
	References


