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Abstract 

Purpose  Accurately segmenting the hippocampus is an essential step in brain tumor radiotherapy planning. Some 
patients undergo brain tumor resection beforehand, which can significantly alter the postoperative regions’ appear-
ances and intensity of the 3D MR images. However, there are limited tumor resection patient images for deep neural 
networks to be effective.

Methods  We propose a novel automatic hippocampus segmentation framework via postoperative image synthe-
sis. The variational generative adversarial network consists of intensity alignment and a weight-map-guided feature 
fusion module, which transfers the postoperative regions to the preoperative images. In addition, to further boost 
the performance of hippocampus segmentation, We design a joint training strategy to optimize the image synthesis 
network and the segmentation task simultaneously.

Results  Comprehensive experiments demonstrate that our proposed method on the dataset with 48 nasopharyn-
geal carcinoma patients and 67 brain tumor patients observes consistent improvements over state-of-the-art 
methods.

Conclusion  The proposed postoperative image synthesis method act as a novel and powerful scheme to generate 
additional training data. Compared with existing deep learning methods, it achieves better accuracy for hippocampus 
segmentation of brain tumor patients who have undergone brain tumor resection. It can be used as an automatic 
contouring tool for hippocampus delineation in hippocampus-sparing radiotherapy.

Keywords  Automatic hippocampus segmentation, Postoperative image synthesis, Variational generative adversarial 
network, Radiotherapy

†Changjuan Tao and Difei Gu contributed equally to this work.

*Correspondence:
Yuanyuan Chen
chenyy2@sysucc.org.cn
Xiaofan Zhang
xiaofan.zhang@sjtu.edu.cn
Hongsheng Li
hsli@ee.cuhk.edu.hk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-023-01087-2&domain=pdf


Page 2 of 13Tao et al. BMC Medical Imaging          (2023) 23:142 

Introduction
Radiotherapy is an effective treatment for patients 
with brain tumors. During the planning for radiother-
apy, a series of normal organs (organs-at-risk) need 
to be spared from radiation, especially the hippocam-
pus. Hippocampus, highlighted in Fig.  1C is a small 
S-shaped structure within the temporal lobe that can 
be identified as a layer of densely packed neurons [1], 
which plays an important role in the formation of new 
memories. If the radiation with too high dose injures 
the hippocampus, it would influence a person’s learn-
ing and memory functionalities as well as their ability 
to remember directions, locations and orientations [2]. 
Accurately delineating the hippocampus is an essen-
tial step in radiotherapy planning. According to report 
RTOG 0933, hippocampus-sparing radiotherapy can 
provide better preservation of memory and cognitive 
function [3].

The treatment manner for patients with brain tumors 
might involve both tumor resection and radiother-
apy. Due to the surgical treatment, the brain tumor 
images may contain postoperative regions that exhibit 
significant regional appearance variations as well as 
large intensity variations between patients, as shown 
in Fig.  1B. When applying state-of-the-art methods 
on such brain tumor MR images, their segmentation 
performances of the hippocampus deteriorate dra-
matically, which hinders their clinical applications. 
Therefore, accurately segmenting the hippocampus 
for brain tumor patients who have undergone tumor 

resection surgery with limited training data is still a 
challenging problem.

Even though more deep learning-based models have 
been proposed for automatic hippocampus segmentation 
in the last few years, these deep learning models are still 
heavily dependent on the training data. State-of-the-art 
methods mostly train models on healthy or preoperative 
patients from public datasets [4]. Our experiments show 
that such models trained in previous methods are inca-
pable of maintaining good performance on brain tumor 
patients who have undergone tumor resection. Collect-
ing more of these postoperative patients is a difficult task 
because manual segment hippocampus is time-consum-
ing and prone to intra- and inter-rater variations, also, 
there are limited patients with a brain tumor. Recently, 
there has been open-source dataset such as the BraTS 
[5–8], this dataset contains a respectable number of brain 
tumor MRI scans, and involving state-of-the-art meth-
ods [9–12] for locating brain tumors. Even though these 
datasets have data in large amounts, they are unable to 
provide resected brain tumor MRI scans and the involved 
state-of-the-art methods do not address the postopera-
tive region. This proposed difficult problem motivates 
our work by looking into generative adversarial methods.

The study aims to develop an automatic method for 
hippocampus segmentation on MR images for brain 
tumor patients who have undergone tumor resection 
with limited training data. We propose a postopera-
tive image synthesis framework, illustrated in Fig.  1A, 
to alleviate the problem mentioned above. And we find 
that training the generator and segmentation network 

Fig. 1  A Our proposed brain tumor image generation architecture (VAE-GAN) with joint image segmentation. It consists of two components 
VAE and GAN in which encoder-decoder architectures are utilized. Detailed schematics are explored in the methods section. B Nasopharyngeal 
carcinoma brain MR images (top) and brain tumor MR images (bottom). The fake image is generated by transferring the postoperative region 
(indicated by the orange dashed bounding box) from the bottom image to the top image. C MR brain cross-section. The hippocampus 
within the enlarged cropped region is labeled with green markers
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together is crucial in achieving high performance. Spe-
cifically, given a brain tumor image with postoperative 
regions as a reference, the generator sub-network in the 
proposed variational generative adversarial network 
(VAE-GAN) synthesizes images of brain tumor resection 
by transferring the postoperative region from the refer-
ence image to a regular image without surgery. The pro-
cess involves utilizing coupled encoders and a mask to 
combine important features from the two images: task-
specific post-operation region information from the ref-
erence image and valuable background information from 
the regular image without surgery. The generator, on the 
other hand, learns this information and reconstructs new 
realistic synthetic images. In addition, in order to make 
the generated images realistic, the generator would also 
align the intensity between the generated image and the 
reference image. A modified 3D SEResUNet is proposed 
to segment the hippocampus, and the synthetic postop-
erative images are used to refine our segmentation net-
work. Overall, VAE-GAN and the segmentation network 
are jointly optimized during the training process. We 
demonstrate that our proposed end-to-end joint genera-
tion-segmentation framework can improve the segmen-
tation performance of the hippocampus significantly on 
brain tumor patients. The contributions of this study can 
be summarized as follows: 

1.	 We propose a novel end-to-end joint generation-
segmentation framework dedicated for hippocam-
pus segmentation of head-and-neck MR images with 
brain tumor resection.

2.	 A novel VAE-GAN is developed to synthesize MR 
images with postoperative region. To make the gen-
erated images more realistic, an intensity alignment 
module is developed to align the intensity between 
the synthesized image and the reference image.

3.	 A joint training strategy has been used to simultane-
ously optimize the VAE-GAN and the segmentation 
network so that these two tasks could promote each 
other.

Background
Hippocampus segmentation
Hippocampus segmentation is a crucial pre-radiother-
apy procedure. Previously conducted manually, which is 
inefficient and prone to error, motivates fully automatic 
segmentation.

The earliest method that came close to automatic 
segmentation was proposed with the conventional 
image processing technique. One of the earliest works 
[13, 14] investigates the method of deformable con-
tours and applies it to the hippocampus segmentation 

problem. Note that these methods are not fully auto-
mated since human-computer interactions were still 
required. Thereafter, atlas-based registration technique 
was introduced [15]. This involves the need for an atlas 
patch-based method in combination with labels to pre-
dict the segmentation. But these methods are compu-
tationally heavy and highly dependent on the choice of 
an atlas. Alternative methods such as Sub-Fields seg-
mentation techniques [16, 17] look at the hippocampus 
not as a homogeneous structure but rather utilizing the 
ultra high-field MRI scanner to find certain bio-markers 
for segmentation. Although refined results, these meth-
ods do not unify on segmentation protocols. Given the 
well-received popularity in convolutional neural net-
works, deep learning-based methods have been pro-
posed [18], in which 3D U-Net was employed as it is 
widely used in medical image segmentation tasks [19].

However, if the patient has experienced brain surgery, 
such as brain tumor resection, the latest solutions fall 
short on segmentation accuracy. It is challenging to 
obtain a large amount of MR images of this type. Thus 
we surveyed a collection of papers that address this 
problem by proposing a synthetic image generation 
method using a Generative Adversarial Network.

Synthetic image generation
Generative Adversarial Network (GAN) [20] is a cate-
gory of models that generate synthetic data which con-
tains the same statistics as the given training set. GAN 
is popular in medical tasks playing the role of data aug-
mentation since it unravels the frequently occurring 
problem of insufficient data.

CycleGAN [21] is an image generation method that is 
unsupervised such that data and its corresponding label 
no longer have to coexist. CycleGAN imposes cycle 
consistency, in which the forward and the backward 
mapping functions are inverses of each other. MUNIT 
[22] is an unsupervised image translation model that 
learns image domain styles such that images from an 
arbitrary domain can be transferred to this domain by 
using its style encoder. DiscoGAN [23] is another unsu-
pervised GAN that implements two image domain-
transfer generators. DiscoGAN uses two reconstruction 
losses one for each direction of domain generation and 
forces a one-to-one domain translation.

We aim to design a VAE-GAN in conjunction with 
feature maps to perform region-wise transfer and 
create new synthetic region transferred images that 
strengthen our hippocampus segmentation perfor-
mance. We will show it in greater details in the section 
“Postoperative image synthesis”.
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Methods
Data collection
A total number of 127 patients with nasopharyngeal car-
cinoma and brain tumor receiving radiotherapy from 
February 2009 to December 2019 in the Cancer Hospi-
tal of University of the Chinese Academy of Sciences 
(Zhejiang Cancer Hospital) are included in this study. T1 
weighted MR images (T1WI) were acquired via Siemens 
MRI Machine for all patients. 12 additional T1 C+ brain 
tumor MR images from 2023 acquired from the same 
source included to measure the model’s ability on images 
with both test-of-time and domain differences.

Specifically, there are 48 patients with nasopharyn-
geal carcinoma (NC) who have not experienced tumor 
resection and 67 + 12 patients whose brain tumors are 
resected (BTR) before radiotherapy.

For the NC dataset, the in-plane resolution of the 
images ranged from 0.36 to 0.94 mm, with a mean value 
of 0.8 mm and a median value of 0.94 mm. The slice 
thickness ranged from 0.9 mm to 3.25 mm, with a mean 
value of 1.31 mm and a median value of 1 mm. For the 
BTR dataset, the in-plane resolution of the images ranged 
from 0.3 to 1.02 mm, with a mean value of 0.78 mm and 
a median value of 0.94 mm. The slice thickness ranged 
from 1 mm to 7.8 mm, with a mean value of 2.05 mm and 
a median value of 1 mm.

Experienced doctors manually delineate the hippocam-
pus on the RayStation Treatment Planning System, and 
the annotations are reviewed by another experienced 
doctors to confirm the correctness of annotation.

Problem formulation
This study focuses on automatic hippocampus segmenta-
tion on MR images for patients with brain tumors who 
have undergone tumor resection during radiotherapy. 
Training data from this type of patient are very difficult 

to obtain. Most existing methods train their models on 
images of healthy or preoperative patients, such as naso-
pharyngeal carcinoma. However, suppose we apply these 
methods directly to images after tumor resection sur-
gery, the segmentation performance of the hippocampus 
drops dramatically because the resection surgery altered 
the postoperative regions’ appearances and intensity sig-
nificantly (shown in Fig. 2).

We develop a novel joint generation-segmentation 
framework focusing on hippocampus segmentation for 
images after brain tumor resection surgery to overcome 
this challenge. Figure  3 is the overview of the proposed 
framework, which contains two main components: VAE-
GAN for postoperative image synthesis and the segmen-
tation network for hippocampus segmentation. The two 
components could be jointly optimized in an end-to-end 
manner during the training process.

Postoperative image synthesis
The very straightforward way to deal with the lack of data 
is to generate more. Therefore, VAE-GAN is designed to 
generate the MR image after tumor resection surgery.

Specifically, a source dataset of MR images of naso-
pharyngeal carcinoma patients without any surgery, 
DS = {(xSi , y

S
i )|i = 1, . . . ,NS} , and a target dataset of MR 

images of brain tumor patients with tumor resection, 
DT = {(xTi , y

T
i )|i = 1, . . . ,NT } , xSi  , and ySi  denote the i-th 

training images of the source domain and its correspond-
ing segmentation mask of the hippocampus, and NS is 
the number of training images. xTi  , and yTi  denote the i-th 
training images of the target domain and its correspond-
ing segmentation mask for the hippocampus, and NT is 
the number of training images. VAE-GAN synthesizes 
postoperative images as additional training data by trans-
ferring the postoperative region in DT to DS , as well as 
aligning the intensities between DS and DT .

Fig. 2  MR images of nasopharyngeal carcinoma and brain tumor. The first row is the images with nasopharyngeal carcinoma. The second row 
is the images with brain tumor. Usually there are some postoperative regions on brain tumor images that exhibit significant appearance variations 
and intensity variations
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Specifically, our VAE-GAN, as illustrated in Fig. 3, is 
based on variational autoencoder (VAE) [24–26] and 
generative adversarial networks (GANs) [27, 28]. The 
motivation of our model comes from the fact a gen-
erator can be constructed using an encoder-decoder 
architecture, which learns a marginal distribution of 
the source and target images. Such a structure also 
enables any region of transfer by utilizing a mask and 
applying it within the encoder. The model consists of 
4 sub-networks: two domain-specific image encoders 
ES and ET  , one image generator G, and one adversarial 
discriminator D.

Encoder-generator. The encoder-generator pair 
{ET ,G} constitutes a VAE for the target domain, named 
VAET . For an input image xT ∈ DT , the VAET first 
maps the input image xT to a randomized latent code 
in a latent space ZT via encoder ET and then decodes 
the mapped code to reconstruct the input image via 
the generator G. We assume the codes in the latent 
space ZT are normally distributed. The encoder has two 
branches and outputs a mean vector Eµ

T (x
T ) and a vari-

ance vector Eσ
T (x

T ) , and the distribution of the latent 
code zT is generated by sampling a normal distribution 
as qY (zT |xT ) ≡ N (zT |Eµ,T (x

T ),Eσ ,T (x
T )) . The genera-

tor takes the latent code as input and reconstructs the 
input image, denoted as x̂T = G(zT ∼ qT (z

T |xT )) . Since 
images in the target domain DT contain postoperative 
regions, the encoder ET also encodes appearance infor-
mation around the postoperative regions and the part of 
the task for generator G is to reconstruct it.

As our goal is to synthesize postoperative images with 
such postoperative regions, we introduce a pre-annotated 
voxel-wise spatial weight map T  to encode the location 
of the postoperative regions and feed it into the genera-
tor G to make the network aware of the surgical location. 
Generally, the voxels close to the postoperative region 
have higher weights in the weight map and vice versa. We 
make the weight map follows a Gaussian-like distribu-
tion. Let (µx,µy,µz) denote the centroid of the postop-
erative region. We use Ti to represent the weight of voxel 
i with the coordinate (vix, viy, viz) in T :

where σ is a parameter that controls the sharpness of the 
postoperative spatial weight map. The spatial weight map 
is injected into the generator via feature concatenation. 
An example of T  is shown in Fig. 3.

Similarly, {ES ,G} constitutes a VAE for the source 
domain, named VAES . Different from the VAET , it takes 
an image xS ∈ DS , postoperative image features of a 
target domain image from the encoder ET as inputs. In 
addition, to make the encoder ES understand the surgi-
cal location, we also introduce the voxel-wise spatial 
weight map T  to encode the location of the postoperative 
regions.

Generally, ES first maps xS to a latent code in a latent 
space ZS . In order to transfer the postoperative region 
from the target domain to the source domain, we propose 

(1)

Ti = exp −
(vix − µx)

2 + (viy − µy)
2 + (viz − µz)

2

2σ 2
,

Fig. 3  The overall pipeline of the proposed VAE-GAN framework. CONV denotes convolution layer, IN denotes instance normalization, ELU denotes 
exponential linear unit, FC denotes fully connected layer, and UP denotes up-sampling operation. The Schematic is reduced from 3D to 2D 
for visual clarity. The generated and reconstructed output depends on the intensity alignment, which is delivered by switching to the different set 
of parameters of the Adaptive Instance Normalization. Feature fusion is not used in the case of reconstructed output
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to integrate features around the postoperative region 
from the encoder ET into the feature maps of the encoder 
ES via the spatial weight map T :

where ⊙ denotes spatial-wise multiplication, and Ne is 
the number of the layers in the encoder, F̂i,S(xS) denote 
the i-th layer’s feature of the encoder ES before feature 
fusion, and Fi,T (xT ) denote the i-th layer’s feature of the 
encoder ET . Then the i-th layer’s feature after fusion con-
tains the information from both encoders ES and ET.

To transfer the postoperative region from the target 
domain to the source domain, we adopt a weight-shar-
ing strategy on the generator G to relate the two VAEs 
between two domains, i.e., G is the shared-weights gener-
ator. For an image xT in the target domain, the generator 
aims to reconstruct the same image with tumor resec-
tion. Therefore, we use the L1 loss to supervise the recon-
struction task as

For an image xS in the source domain, we aim to synthe-
size a postoperative image by transferring the postopera-
tive region of the image xT to the corresponding location 
of xS while keeping the image contents outside the post-
operative region unchanged.

We first obtain a binary mask M of the postoperative 
region by thresholding the normally-distributed weight 
map T  obtained above. We supervise the reconstruction 
of the voxels outside the postoperative region using the 
binary mask M with the L1 loss as

where ⊙ denotes spatial-wise multiplication.
Intensity alignment. The intensities between the two 

domains also exhibit large variations (see Fig.  5). If we 
share all the parameters of the generator G, the fore-
ground (postoperative region) and background of the 
synthetic images would be inharmonious.

To align the intensities of the images, we could follow 
the idea of Adaptive Instance Normalization [29], where 
instance normalization conducts style normalization by 
normalizing feature statistics, i.e., the channel-wise mean 
and variance. [29] shows that the feature statistics can 
control the style of the generated image.

Therefore, we can normalize their feature statistics and 
consequently normalize the output image intensity by 
using different sets of affine parameters in instance nor-
malization of the two sets of images. We integrate the 
generator G with instance normalization layers and two 
sets of different affine parameters (γ S ,βS) and (γ T ,βT ) , 

(2)
Fi,S(x

S) = T ⊙ Fi,T (x
T )+ (1− T )⊙ Fi,S(x

S), for i = 1, . . . ,Ne ,

(3)LrecT = �G(zT )− xT�1.

(4)LrecS = (1−M)⊙ �G(zS)− xS�1,

one for the source domain and the other one for the tar-
get domain.

At the training stage, each domain use their aff-
ine parameters to encode their own style (intensity) 
information,

where zS and zT are the latent codes from two encoders. 
(γ S ,βS) and (γ T ,βT ) are the two sets of affine parameters 
in all instance normalization layers in generator G.

At the inference stage, we use the affine parameters 
(γ T ,βT ) for images from the source domain in order to 
align the intensity between the two domains and make 
the synthetic images more harmonious.

Discriminator. To properly supervise the generator G to 
synthesize realistic images, we adopt an adversarial dis-
criminator D to distinguish whether an image is real ( xT 
from the target domain with the postoperative region) or 
fake ( ̂xS→T transferred from the source domain). The G 
is trained to fool the adversarial discriminator D.

For traditional discriminators in image synthesis tasks, 
only an image is fed into the discriminator as input. 
However, the synthesized postoperative region only 
appears in a small image area. There is no guarantee that 
the postoperative region could be transferred from the 
target domain to the source domain in the correspond-
ing position. We, therefore, encourage the discriminator 
not only to find whether the synthesized image is real or 
fake, but also whether the postoperative location of the 
synthetic image matches that of the image xT with tumor 
resection.

Inspired by the semantic embedding discriminator 
[30], which proposed a patch-based semantics embed-
ding discriminator to tell not only real or fake but also 
whether the patches match their corresponding seman-
tic labels. We design our discriminator D with a similar 
idea, where the postoperative region weight map T  is 
employed to force the discriminator to focus on the post-
operative region. Our discriminator takes the real images 
from the target domain xT or the generated images x̂S→T 
as inputs.

The discriminator creates a set of feature pyramids of 
different spatial scales. The feature vector at each spatial 
location represents a patch corresponding to the input 
image. D tries to classify whether each patch is real or 
fake by the predicted score for each spatial location in 
the feature pyramids. Specifically, for each spatial scale, 
we first downsample the weight map to the same spatial 

(5)x̂T =G(zT , γ T ,βT ),

(6)x̂S =G(zS , γ S ,βS),

(7)x̂S→T = G(zS , γ T ,βT ).
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resolution and convert the weight map to a vector with a 
1× 1 convolution at each spatial location, whose dimen-
sion is equal to that of the feature maps from the pyra-
mid. We then calculate the inner product between feature 
vectors of feature pyramids and location embedding map 
to generate a postoperative region-aware matching score 
map. Finally, the postoperative region-aware matching 
score map can represent the discriminator’s confidence 
in the patches’ realness and drive the generator G to syn-
thesize a real and spatially aligned postoperative region 
with the image from the target domain.

Following the previous work [30], we adopt the hinge 
loss as the adversarial loss,

where xT is the image from the target domain, x̂S→T is 
the image transferred from the source domain to the 
target domain with postoperative region, and T  is the 
Gaussian-like weight map.

Hippocampus segmentation
Since the final goal is to segment the hippocampus in MR 
images after brain tumor surgery, our segmentation net-
work S inputs are the synthesized postoperative images 
and the real images from the target domain (with postop-
erative regions).

Unlike existing methods that treat the segmentation 
network and the generative adversarial networks as two 
separate components, we argue that the two networks 
could be jointly optimized to achieve optimal perfor-
mance. Specifically, our VAE-GAN for synthesizing post-
operative images is jointly trained with the segmentation 
network in an end-to-end manner. Hence, the generated 

(8)
LadvD =−min(0,−1+ D(xT , T ))

−min(0,−1− D(x̂S→T , T )),

(9)LadvG =− D(x̂S→T , T ),

images not only contain postoperative regions but also 
benefits the segmentation task. Moreover, the generator 
can act as a strong data augmentation scheme that can 
provide abundant training samples to improve the seg-
mentation performance.

Segmentation network. U-Net [31] is the predomi-
nant approach in medical image segmentation because of 
its powerful feature learning capability. Our segmentation 
network is based on the 3D U-Net, which could capture the 
volumetric contextual information. And we further modify 
it for the hippocampus segmentation task.

We replace the standard Conv-BN-ReLU blocks with 
the squeeze-and-excitation res-blocks (SEResBlock) [32], 
The SEResBlock introduces channel-wise attention by 
adaptively re-weighting channel-wise feature responses to 
explicitly model the importance of each channel.

Since the hippocampus is a small region in MR 
images and too much downsampling operation would 
lead to the loss of spatial information, which hurts 
the segmentation performance for the hippocampus. 
Therefore, we only perform the downsampling twice 
and the upsampling twice via convolution and decon-
volution with the stride of 2. However, fewer down-
sampling layers may lead to smaller receptive fields. In 
order to solve this problem, DenseASPP module [33] 
is inserted between the downsampling and upsampling 
stage. By concatenating a set of atrous convolution 
with different dilation rates in a dense way, Den-
seASPP effectively generates densely spatial-sampled 
and scale-sampled features while enlarging the valid 
receptive field. The detail of our modified 3D U-Net is 
shown in Fig. 4.

Segmentation loss. The dice loss can be formulated as

(10)Ldice =

C
∑

t=0

(

1− 2

∑

ytpt + ǫ
∑

yt +
∑

pt + ǫ

)

,

Fig. 4  The network architecture of our proposed segmentation network
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where yt and pt represent the ground-truth label and 
model’s predictions for class t, respectively, and ǫ is a 
small value to ensure numerical stability.

The hippocampus is a small organ, leading to extreme 
foreground-background class imbalance. To alleviate 
the imbalance problem, we adopt the weighted focal loss 
[34] and dice loss [35] as the segmentation losses. The 
weighted focal loss is formulated as

where pt is the model’s estimated probability that a sam-
ple is correctly classified, and αt is used to balance the 
foreground and background. In general, the focal loss 
down-weights the well-classified examples and makes the 
training focus more on the hard examples. The hyper-
parameters of the focal loss α and γ are empirically set as 
0.25 and 2.

The overall segmentation loss is thus defined as

where � is the loss weight to balance the two losses.

Joint training strategy and overall losses
The segmentation network S (pretrained with DS and 
DT ), generator G, and discriminator D are trained alter-
natively. The generator G is optimized by minimizing LG 
with D and S fixed,

The discriminator D is then optimized by fixing G and S, 
and it minimizes the loss LD,

The segmentation network S which minimizes the loss 
LS , as mentioned above, could be jointly optimized with 
G and D for better performance. Note that during train-
ing, the loss LS is not minimized until further into the 
epochs, see section “Implementation details” for detailed 
training procedures.

where �rec, �advG , �advD, �segG , �segS balances the impor-
tance of the losses.

Finally, the overall loss can be formulated as,

Results
Experimental settings
To evaluate the effectiveness of our proposed hip-
pocampus segmentation framework, we retrospectively 

(11)Lfocal = −αt(1− pt)
γ log(pt),

(12)Lseg = Lfocal + �Ldice,

(13)
LG = �rec(LrecS + LrecT)+ �advGLadvG + �segGLseg.

(14)LD = �advDLadvD.

(15)LS = �segSLseg,

(16)Loverall = LG + LD + LS ,

collected 48 MR images of nasopharyngeal carcinoma 
patients without tumor resection and 67 MR images of 
brain tumor patients with tumor resection. Images from 
the BTR dataset are randomly divided into training and 
test sets with a ratio of 4:1.

We set up a four stages ablation study and observe 
performance changes. In addition, we also compare 
our method with the most representative unsupervised 
image-to-image translation methods: MUNIT [22], Dis-
coGAN [23] and CycleGAN [21].

Implementation details
The model is trained on an NVIDIA Tesla V100 GPU 
with a minibatch of 2, where one image is from DS 
(without tumor resection) and the other one is from 
DT (with tumor resection). We use synchronized SGD 
and adopt Adam optimizer for optimization. The ini-
tial learning rate is 0.0002, and a cosine learning policy 
is employed. Weight decay of 0.0005 and momentum 
of 0.9 are used for training. The hyper-parameters 
�, �rec, �advG, �advD, �segG, �segS are empirically set as 1.0, 
10, 1.0, 1.0, 1.0, 1.0.

For pre-processing, considering the varying resolutions 
of different data in the original MR images, all the MR 
images are re-sampled to 1× 1× 1 mm3 . We then extract 
the patch of size [64, 96, 64] as network input. Random 
affine transformations (including random rotation, ran-
dom scale, and random translation) are employed for 
data augmentation during training. We first train our 
improved 3D U-Net for 200 epochs with data from both 
DS and DT . We then attach VAE-GAN and train for 200 
epochs: We turn off the gradient update for the 3D U-Net 
in the first 100 epochs and let the model train the VAE-
GAN only. We finished the training by turning the 3D 
U-Net gradient update on and letting the model train 
end-to-end. During the inference stage, we only apply 
the segmentation network to predict the hippocampus, 
and the generator could be discarded for computational 
efficiency.

Evaluation metrics
In this study, several commonly used metrics including 
Dice Score Coefficient (DSC), Hausdorff Distance (HD), 
and Average Surface Distance (ASD) are adopted for 
evaluation of hippocampus segmentation with all com-
pared approaches. Furthermore, We include precision, 
sensitivity, and specificity for quantitative comparison.

Ablation study
In this section, we compare our model quantitatively 
through ablation studies on baselines as well as added 
components. 1) We train 3D U-Net as baseline segmen-
tation model with DT brain tumor only and one with 
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both domains ( DS nasopharyngeal carcinoma and DT 
with brain tumor). We evaluate models in each respect; 
2) We use our improved segmentation network (Seg-
Net) to train it with data from both domains. 3) We per-
form intensity transfer to align the intensity of DT to DS 
(IntAli) and train it on our SegNet. 4) We apply our VAE-
GAN to synthesize postoperative images by transferring 
DT images’ postoperative regions to images of DS , and we 
could thus use the generated images together with real 
images from DS to train our segmentation model. At the 
same time, we also want to show that training the VAE-
GAN and SegNet synchronously promotes each other 
even further. Therefore we train the networks (VAE-
GAN and SegNet) separately such that when SegNet is 
trained, we freeze the gradient of the VAE-GAN. 5) This 
final experiment has the exact model configuration as 4) 
but this time we jointly train both VAE-GAN and SegNet 
such that mutual promotions take effect.

We report results on the dataset with brain tumors 
resection (BTR). The baseline experiments train with 
only DT training set (55 images), and the rest of the 
experiments train on the combined training datasets (103 
images).

The results are shown in Table  1. We can obtain the 
following observations: 1) Simply combining the images 
from the two domains (S + T) for a more extensive train-
ing set only brings negligible improvement of the DSC 

score compared with the target dataset DT (from 0.6971 
to 0.6986), and ASD score gets worse (from 1.82 to 3.32). 
This shows that naively combining multiple datasets from 
different domains is ineffective in handling the domain 
gap problem. 2) The modified 3D U-Net structure con-
siderably helps with the overall performance (from 0.6986 
to 0.7199), indicating that a more suitable backbone net-
work could improve performance on a certain task. 3) 
Intensity alignment module could further improve the 
model by addressing the domain gap between DS and 
DT . Performance on DT can reach 0.7354, suggesting 
that intensity is a key factor in the segmentation perfor-
mance. 4) When using our VAE-GAN for postoperative 
region transfer in addition to intensity alignment, the 
testing result on DT can be further lifted to 0.7429 with 
some compensation from HD and ASD, suggesting post-
operative region is another important information that 
helps with the segmentation performance. 5) Finally, we 
modified our networks’ training strategy from training 
them separately to training them jointly. We can see an 
even larger improvement in dice score: 0.7546 and pro-
duce the lowest HD and ASD scores. The increase in 
scores shows that training VAE-GAN with SegNet does 
induce a mutual promotion, which raises the segmenta-
tion accuracy as well as reduces its variance. All of the 
improvements check out our original hypothesis and 
demonstrate the effectiveness of our proposed methods.

Quantitative comparison
In this section, we compare our method with other 
state-of-the-art methods for image-to-image trans-
lation. MUNIT [22], DiscoGAN [23] and CycleGAN 
[21] are three popular GAN frameworks primar-
ily used to learn transformations between images 
of different domains using unpaired datasets. Fol-
lowing our experimental setup, we first adopt these 
models to translate images from DS to DT  , and then 
use such synthetic images together with the real 
images from DT  to train the segmentation model. 
The results are shown in Table  2. By comparing the 
DSC score, we can see that our method outperforms 

Table 1  DSC, HD(mm) and ASD(mm) of results by different 
comparative methods. T: the target domain dataset (BTR). S: the 
source domain dataset (NC). S(it): the source domain dataset 
with intensity transfer only. S →T(it): synthetic images from the 
source domain (postoperative transfer and intensity transfer)

Model Dataset DSC HD(mm) ASD(mm)

3D U-Net T 0.6971 17.20 1.82

3D U-Net S+T 0.6986 10.90 3.32

SegNet S+T 0.7199 10.66 1.39

Ours w/o VAE-GAN S(it)+T 0.7354 5.06 0.83

Ours (full) S→T(it)+T 0.7429 9.40 1.13

Ours (full, train jointly) S→T(it)+T 0.7546 4.68 0.75

Table 2  DSC, HD(mm) and ASD(mm) of results compared with baseline, MUNIT [22], DiscoGAN [23] and CycleGAN [21] using 2009-
2019 data

DSC HD(mm) ASD(mm) Precision Sensitivity Specificity

3D U-Net Baseline 0.6971 17.20 1.82 0.74 0.63 0.99

MUNIT [22] 0.7053 14.34 3.12 0.69 0.77 0.99

DiscoGAN [23] 0.7310 9.32 1.98 0.68 0.75 0.99

CycleGAN [21] 0.7206 9.87 1.13 0.72 0.73 0.99

Ours 0.7546 4.68 0.75 0.72 0.77 0.99
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MUNIT by 0.0493, DiscoGAN by 0.0236, and Cycle-
GAN by 0.0340. We found out that MUNIT fails to 
learn different intensity levels between the two image 
domains and focuses on transferring the fine appear-
ances. DiscoGAN, on the other hand, does perform 
well on intensity transfer. However, it fails to gener-
ate fine detail appearances. CycleGAN generates the 

best-looking images out of the three. However, just 
like MUNIT, it doesn’t do well in intensity transfer. 
Furthermore, all three GAN models fail to generate 
images with the postoperative region. Additionally, we 
included precision, sensitivity, and specificity for all 
comparison models. Results from sensitivity suggest 
that our method has the largest positive detection rate 

Table 3  DSC, HD(mm), ASD(mm), precision, sensitivity and specificity of results compared with baseline, MUNIT [22], DiscoGAN [23] 
and CycleGAN [21] on our recent collected dataset from 2023

DSC HD(mm) ASD(mm) Precision Sensitivity Specificity

3D U-Net Baseline 0.6421 13.07 2.23 0.64 0.67 0.99

MUNIT [22] 0.6463 13.70 3.12 0.64 0.67 0.99

DiscoGAN [23] 0.6577 21.2 2.07 0.65 0.68 0.99

CycleGAN [21] 0.6744 18.01 2.08 0.69 0.67 0.99

Ours 0.7215 6.72 1.06 0.72 0.73 0.99

Fig. 5  Visualization of postoperative image synthesis. (a) The images with postoperative regions and their weight map from DT  . (b∼ e) Images 
from the source domain DS and the synthesized images of our proposed method
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while results from specificity revealed that all models 
succeeded in predicting the background.

To showcase our model’s robustness to the test-of-time 
and different image modality, we included additional 
patient data from 2023 combined with the previously 
mentioned data. This new data set has a different imag-
ing sequence of T1 C+ to pose a significant segmentation 
challenge. We followed the same experimental setup, and 
the results are shown in Table 3. Since we introduced a 
second type of light intensity into the dataset, the Dice 
score of all models dropped across the board as much 
as ∼ 0.08 with a significantly worse HD value. Because 
our method contains the intensity transfer module, the 
model persisted in a promising result with the smallest 
drop in all metrics.

These comparisons demonstrate that explicitly syn-
thesizing postoperative regions and intensity transfer is 
an effective scheme to overcome the domain gap prob-
lem for hippocampus segmentation after brain tumor 
resection.

Qualitative comparison
Postoperative region synthesis. We show some visuali-
zation results of postoperative region synthesis in Fig. 5.

We randomly select images with the postoperative 
region from the target domain DT as well as its corre-
sponding Gaussian weight map as references. Then we 
transfer the postoperative region into the images from 
the source domain DS.

We can see that our proposed VAE-GAN can suc-
cessfully transfer the postoperative region into an 
image without such a region. In addition, our method 
can automatically align the intensity between the 
synthetic image and the reference image, making the 
synthetic images more agreeable with the surround-
ing context. With these synthetic images as training 
samples, we can effectively improve the performance 
for hippocampus segmentation of patients after brain 
tumor resection.

Hippocampus segmentation. We show some visu-
alization results of some comparison methods for hip-
pocampus segmentation on images from DT  , including 
baseline, MUNIT [22], DiscoGAN [23], CycleGAN 
[21], and our proposed method. As illustrated in Fig. 6, 
in the first column, when training baseline model on 
DT  , the segmentation result is significantly poorer 
compared to other methods on the right, which is con-
sistent with the quantitative result. The quantitative 
result from MUNIT is closer to the baseline signifies 

Fig. 6  Visualization of each comparative method for hippocampus segmentation. Baseline: Only using images from DT  to train. MUNIT [22], 
DiscoGAN [23], CycleGAN [21]: Using synthetic images from the model and real images from DT  as training samples. Ours: Using synthetic images 
from our proposed VAE-GAN framework and real images from DT  as training samples
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that the domain gap problem, specifically intensity dif-
ferences between two domains, is certainly an impor-
tant factor to consider. There also exist distinct false 
positives (fourth row, first, second, and fourth col; fifth 
row, first, second col), and the cause of this is perhaps 
the insufficient training data and GAN not generaliz-
ing well on both domains. Our method, on the other 
hand, can generate the most superior results for hip-
pocampus segmentation, outperforming the baseline 
and rest of the methods. This proves that our pro-
posed VAE-GAN framework can synthesize realistic 
images with the postoperative region, and the syn-
thetic images can benefit the hippocampus segmenta-
tion task.

Conclusion and discussion
To generate more training data for accurately segment-
ing the hippocampus on the MR image of patients with 
tumor resection, we propose synthesizing the image 
with the postoperative region by image of other dis-
eases (such as nasopharyngeal carcinoma). We design 
a novel end-to-end generation-segmentation frame-
work, consisting of a VAE-GAN and a segmentation 
network. Given an image after tumor resection, our 
VAE-GAN could transfer the postoperative region to 
the image without tumor, and further align the inten-
sity of two domains, making synthetic images more 
harmonious. Moreover, we design a modified 3D 
SEResUNet as the segmentation network. Extensive 
experiments demonstrate the effectiveness of the pro-
posed framework in boosting the performance (+∼ 5% 
DSC) of hippocampus segmentation on the MR image 
of patients after surgery.

There is still room to improve from this current work. 
In future projects, we will explore more factors that con-
tribute to closing the “gap” performance across different 
image modalities. One possible way is using larger data-
set sizes. We will also improve our VAR-GAN by incor-
porating better image modality adaptation methods. 
Additionally, it is possible to look into better segmen-
tation solutions such as incorporating attention-based 
models. Finally, exploration will be made by looking into 
a one-for-all method to align and improve the postop-
erative transfer quality.
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