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Abstract 

Medical images such as CT and X-ray have been widely used for the detection of several chest infections and lung 
diseases. However, these images are susceptible to different types of noise, and it is hard to remove these noises due 
to their complex distribution. The presence of such noise significantly deteriorates the quality of the images and sig-
nificantly affects the diagnosis performance. Hence, the design of an effective de-noising technique is highly essential 
to remove the noise from chest CT and X-ray images prior to further processing. Deep learning methods, mainly, 
CNN have shown tremendous progress on de-noising tasks. However, existing CNN based models estimate the noise 
from the final layers, which may not carry adequate details of the image. To tackle this issue, in this paper a deep 
multi-level semantic fusion network is proposed, called DMF-Net for the removal of noise from chest CT and X-ray 
images. The DMF-Net mainly comprises of a dilated convolutional feature extraction block, a cascaded feature learn-
ing block (CFLB) and a noise fusion block (NFB) followed by a prominent feature extraction block. The CFLB cascades 
the features from different levels (convolutional layers) which are later fed to NFB to attain correct noise prediction. 
Finally, the Prominent Feature Extraction Block(PFEB) produces the clean image. To validate the proposed de-noising 
technique, a separate and a mixed dataset containing high-resolution CT and X-ray images with specific and blind 
noise are used. Experimental results indicate the effectiveness of the DMF-Net compared to other state-of-the-art 
methods in the context of peak signal-to-noise ratio (PSNR) and structural similarity measurement (SSIM) while drasti-
cally cutting down on the processing power needed.
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Introduction
X-ray and Computed Tomography (CT) are two dis-
tinct imaging techniques used frequently in the medi-
cal field for corporal inspection of human lungs. An 
X-ray is a commonly used and widely available imag-
ing technique, while a CT scan is similar to MRI in 
that it produces high-quality body organ images. Both 
types of scans produce images in different ways. The 
CT scan takes pictures of body organs from all angles, 
enhancing its accuracy, while X-rays use electromag-
netic waves to flow through the patient’s body, produc-
ing black-and-white photos of the inside structure. In 
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radiology, CT scans and X-rays are frequently used for 
diagnostic purposes.

The quality of CT and X-ray pictures has deteriorated 
for a variety of causes, including the following:

Blurred image: These medical pictures are blurred due to 
incorrect protocol parameters and patient movement [1]. 
Patient movement is caused by various variables, includ-
ing an increase in heart rate, respiration, fluctuations in the 
number of pixels while scanning in a uniform material, and 
the patient’s unwillingness to cooperate. Blurring rises in 
direct proportion to the degree of movement.

Field of View (FOV): When the resolution is changed 
to take a picture of a smaller or larger area, the image 
quality also gets worse.

Artefact: Artifacts are incidental, supplementary graph-
ics that appear alongside the main image, like metal arti-
facts, beam hardening, and faulty equipment, accidental 
damage, or inappropriate input can result in artefacts.

It has a large impact on reducing the model’s accuracy 
during classification, detection, segmentation, and reg-
istration when the picture quality is influenced by vari-
ous amounts of noise [2–4]. As a result, it is important to 
make a model for removing noise from medical images 
like CT and X-rays as part of the pre-processing [5, 6].

To denoise the images various models are used can be 
categorized in two types (1) traditional model and (2) 
deep models.

(1) Traditional models: Different traditional methods 
used are linear smoothing, median filtering, wiener filter-
ing, anisotropic diffusion, and wavelet-based methods. 

	 i.	 Linear smoothing: Here a noisy image y convolved 
with a Gaussian filter k, to clean up an image. 

 It can also be done in a fourier domain as follows: 

  Here, capital letters stand for the Fourier trans-
form of their counterparts (for example, Y = F(y), 
where F is the Fourier transform), and ⊙ stands for 
the element-wise product. In the Fourier domain, K 
is also gaussian.

	 ii.	 Median Filtering: Median filtering can be used 
instead of linear smoothing. The idea behind median 
filtering is to take an image and work on it one pixel 
at a time. Also, every pixel is supplemented by the 
value that is in the middle of a group of pixels that 
are close to it. So, the method can also be seen as a 
way to filter, although the filter is not linear.

	iii.	 Wiener Filter: Linear prediction, signal restoration, 
and channel equalization are just a few examples 

(1)x̂ = y× k

(2)X̂ = Y ⊙ K

of the many uses for Wiener filters. This technique 
works for both additive noise and multiplicative 
noise.

	iv.	 Anisotropic diffusion: Anisotropic diffusion, an 
iterative method that uses smoothing, can be used 
to remove noise from images. This strategy makes 
an effort to meet the following conditions: (a) 
Object borders must be kept intact, and (b) noise 
must be effectively filtered out in areas of high sim-
ilarity. The approach is so-called because its math-
ematical underpinnings are similar to those of heat 
diffusion equations and because its smoothing or 
diffusion is applied in discrete regions rather than 
globally.

	 v.	 Wavelet-based method: Here, an image is con-
verted into a wavelet domain and wavelet coeffi-
cients. Then, the inverse wavelet transform is used 
to get the denoised image.

(2) Deep models: Deep learning was first introduced for 
image de-noising in 1989 by Chiang and Sullivan. Here 
the proposed neural network uses blur function and 
additive noise to get a clean image. The network then 
used weight values to get rid of complicated noise [7]. To 
cut down on the high cost of computation, a feedforward 
network had been suggested to achieve a tradeoff among 
both de-noising performance and efficiency [8]. After 
that, further optimization techniques were employed to 
speed up the convergence of the network and improve 
the performance of de-noising [9]. Also by raising the 
depth or modifying the activation function, novel net-
work designs shown competitive in removing noise [10]. 
But these models require parameters to be set manu-
ally and it got resolved with gradient descent [11, 12]. 
Because of the aforementioned reasons, convolutional 
neural networks (CNNs) were proposed with vanishing 
gradients and different activation functions such as sig-
moid [13] and tanh [14] but it needs a computationally 
effective platform to implement. As a result the ImageNet 
challenge started in 2012 brings different pre-trained 
models like AlexNet, VGGNet, MobileNet [15–17] etc. 
to deal with. These models were used for de-noising 
image starting from 2015 [18, 19]. Image de-noising 
methods mostly use the mathematical model y = x + η 
to get all the clean images, x, where η and y are just addi-
tive noise with standard deviation(σ ) and a noisy image, 
respectively. Many publications used this formulation as 
the bedrock for their models [20] in the past. Zhang et al. 
[21] devised a deep convolutional neural network entitled 
De-noising CNN with Batch Normalization (BN) and 
Residual Learning (RL) to reconstruct the clean image. 
Autoencoders and stacked sparse autoencoders have 
been applied to enhance image de-noising performance 
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with higher efficiency for spatial correlations [22]. The 
information from the final layer got incorporated in 
most CNN-based models, while low-level information 
remained overlooked. Although the previous methods 
are more appealing toward image restoration, they have 
distinguished drawbacks: (1) The dense network [23] 
does not use the shallow or hidden layers effectively. (2) 
Most of the methods trade-off with complex background 
which hides required features.

Therefore the proposed DMF-Net is composed of 
Dilated Feature Extraction Block (DFEB), Cascaded Fea-
ture Block(CFB), and Prominent Feature Refinement 
Block(PFRB) trained with decaying the learning rate. The 
contributions of this work are as follows,

•	 The proposed DMF-Net contains dilated convolution 
and batch normalization is used with a unique idea of 
combined feature matrix from different layers.

•	 The proposed model is trained and evaluated with 
CT and X-ray images separately and combined.

•	 The proposed model addresses the high-level abstrac-
tion of radiographs, hence eliminating the require-
ment of a handcrafted feature extraction process.

•	 The recent research trends often give importance to 
other layers for feature extraction not only the last 
layer, as it diversifies the image features. Getting 
inspired by this literature, an effort has been made 
with other layers.

Related work
Different CNN models have been designed for object 
detection and retrieval of the clear image with modified 
preexisting networks or designing networks with differ-
ent plug-ins to improve the model results [24, 25]. Most 
of the CNNs has been designed with the aim of improv-
ing efficiency and accuracy w.r.t. de-noising. Dabov et al. 
[20] proposed a model with enhanced sparcity to convert 
2D array to 3d array. They got a significant improvement 
with specially designed weiner filter. Zhang et  al. [26] 
proposed weighted nuclear norm minimization(wnnm) 
technique to take the advantage of nonlocal self similarity. 
Buades et al. [27] put emphasis on nonlocal means(nlm) to 
focus on structual preservation of image. Portilla et al. [28] 
used statistical model with bayesian estimator to eliminate 
gaussian noise. Chen et al. [29] proposed residual encoder 
with decoder convolutional network(RED-CNN) by patch 
based training for CT-images. Gondara et  al. [30] devel-
oped an autoencoder with convolutional layers to deal 
with heterogenious data to address less computational 
complexity. Kang et  al. [22]designed an algorithm with 
directional wavelet to address the photon starvation in CT-
images. Zheng et al. [31] enhanced the spatial adaptivity of 
nlm with element-wise fractal dimension. Duan et al. [32] 

proposed a new second-order total generalised variation 
(TGV) decay model to get rid of speckle noise. Yang et al. 
[33] developed tensor based adaptive control for principal 
component analysis with a searching window for image 
de-noising. Zohair et al. [34] proposed a phase preserving 
approach got better peak signal noise ratio(psnr). Trinh 
et al. [35] formulated quadratic programming on weighted 
image block resulting better performance. Chen et al. [36] 
introduced deep boosting framework integrating with var-
ious cnn to generate required features for noise removal. 
Also the increased training samples has shown better per-
formance in suppressing the noise. As experimented with 
a generative adversarial network (GAN) [37] a discrimina-
tive network has been used to increase the samples for the 
training purposes.

Methodology
This section contains an extensive description of the 
DMF-Net. The noisy X-ray and CT scans are developed 
by adding a particular noise value with the clean image, 
which has been described as Y = X + η , used as a souce 
of data to DICN, where X : clean image, Y: input noisy 
image with η : external noise. The basic goal is to get the 
DICN to learn with a noisy image and then replicate a 
clean or noise-free image. The main aim of the model is 
to make it learn the noisy data to predict the clean image.

Feature dialation
The architecture with dilated convolutions [38] does the 
expansion of the receptive field, which increases accuracy 
with no resolution loss. Integrating multi-scale information 
with sub-sampling in image classification models reduces 
resolution. It helps in the area expansion of image data 
without pooling. The main aim is to cover wider pixel infor-
mation to convolve for the output feature with the same 
cost of computation. Here the dilation factor(d) determines 
what will be the result by convolving with different values 
of d. The same kernel parameter can be used to retrieve 
more information. The value of d=1 means the kernel gets 
mapped with the same size of input but from d=2 onwards 
one pixel gets skipped while mapping with input.

For a dilated convolution or a d-dilated convolution 
named *d is used. The familiar discrete convolution is sim-
ply the 1-dilated convolution. Let f0 , f1 , . . . , fn : Z → R be 
the functions and k0 , k1 , . . . , kn : � → R be the 3× 3 filters. 
Kernel filters has been applied with increasing dilation:

The convolution operation is performed as defined 
(F ∗ k)(p) = X

For the dilated convolution operation, let d is the dila-
tion factor then (F ∗d k)(p) = X

(3)(F ∗ k)(p) =

m+t=p

F(m)k(t)
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Fig. 1  Convolution with(d=2) and without(d=1) dilation

Fig. 2  Proposed model DMF-Net with different blocks
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Here ∗d is assumed as the dilation factor. During con-
volution operation, the dilation factor determines how 
many pixels will be skipped with d dilation, d-1 no. of 
pixels skipped from input receptive(p) during convolu-
tion performed with the kernel. The Fig. 1 shows how the 
convolution performed with the skipping of pixels with 
different dilation factor.

 Proposed DMF‑Net architecture
The proposed architecture DMF-Net in Fig.  2 with the 
layer description in Table  1, contains three parts, DFEB, 
CFB and PFRB. The noisy images are the input to the DFEB 
box which has sub-modules like convolution, convolution 
with batch normalization and dilated convolution with 
batch normalization. CFB block does the inner layer cas-
cading by adding the output features from low, mid and 
high levels. Its aim is to give all the levels equal chances for 

(4)(F ∗d k)(p) =
∑

m+dt=p

F(m)k(t) the extraction of the noisy feature. These get concatenated 
to enhance the feature responsible for the noise. DMF-Net 
is designed with total of 26 convolution layers. The Dilated 
Feature Extraction Block consist of dilated 3 × 3 with ReLU 
[39] activation operation and normalising of several batches 
(BN) [40] and operation of ReLU activation (blue box).

It adds non-linearity to the network. The Batch Normali-
zation performed in different layers enhances the training 
with an improved learning rate. Here from layer numbers 
14th, 15th and 16th, the feature has been taken with con-
volution. This has been done keeping in mind that the fea-
tures from other layers may enhance the noisy information. 
The three features from these layers are concatenated and 
passed through a noise fusion block(NFB). The NFB con-
tains Tan hyperbolic function with convolution and ReLU. 
Finally, it gets convolved to give the final net extracted 
noise. The NFB module refines the fused noise for the final 
considered net noise feature (NNF). This NNF is subtracted 
from the noisy image to give a clear image after passing 
through a prominent feature extraction block(PFRB). It 

Table 1  Detailed description of layers in DMF-Net

Operation Layer No of Filters Size of Each Filters Dilation Stride Value Padding Value Size of Output Image

Input Image - - - - - 128× 128× 1

Convolution Layer Convolution 64 3× 3× 1 1 1× 1 1× 1 128× 128× 64

(one) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 2 1× 1 1× 1 128× 128× 64

(one) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 1 1× 1 1× 1 128× 128× 64

(two) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 2 1× 1 1× 1 128× 128× 64

(one) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 1 1× 1 1× 1 128× 128× 64

(six) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 2 1× 1 1× 1 128× 128× 64

(one) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 1 1× 1 1× 1 128× 128× 64

(four) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution 1 3× 3× 1 1 1× 1 1× 1 128× 128× 1

(three) - - - - - - 128× 128× 1

Tanh - - - - - 128× 128× 1

Convolution Layer Convolution 1 3× 3× 1 1 1× 1 1× 1 128× 128× 1

(one) ReLU - - - - - 128× 128× 1

Convolution Layer Convolution+BN 1 3× 3× 1 1 1× 1 1× 1 128× 128× 1

(one) ReLU - - - - - 128× 128× 1

Convolution Layer Convolution+BN 64 3× 3× 1 1 1× 1 1× 1 128× 128× 64

(one) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 64 3× 3× 1 1 1× 1 1× 1 128× 128× 64

(three) ReLU - - - - - 128× 128× 64

Convolution Layer Convolution+BN 1 3× 3× 1 1 1× 1 1× 1 128× 128× 1

(one) ReLU - - - - - 128× 128× 1
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Fig. 3  PSNR and SSIM w.r.t. Epoch by using DMF-Net without augmentation and with specific noise in (a, b) and blind noise in (c, d) for noise 
level(σ ) 15,20 and 25

Table 2  Using CT and X-Ray images individually and combined, PSNR and SSIM calculated at different noise levels, i.e. specific noise 
( Nsp ) and blind noise(Nbl)

Trained Image Noise=15 Noise=20 Noise=25

PSNR SSIM PSNR SSIM PSNR SSIM

Specific Noise CT(No Aug) 29.33 0.8585 27.99 0.8230 26.95 0.7981

CT(Aug) 29.06 0.8592 27.95 0.8316 26.62 0.7902

X-Ray(No Aug) 30.94 0.8848 29.72 0.8560 28.72 0.8282

X-Ray(Aug) 31.03 0.8896 29.95 0.8637 29.19 0.8442
CT+X-Ray 30.24 0.8794 28.91 0.8445 28.32 0.8314

Blind Noise CT(No Aug) 26.66 0.7973 27.10 0.8082 24.96 0.7444

CT(Aug) 28.23 0.8294 27.11 0.7934 26.57 0.7787

X-Ray(No Aug) 28.59 0.8445 27.72 0.8185 26.94 0.7926

X-Ray(Aug) 28.92 0.8525 28.01 0.8240 27.19 0.7954

CT+X-Ray 29.30 0.8582 28.37 0.8270 27.53 0.8020
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contains four modules with one convolution with ReLU 
and three convolutions with Batch Normalization and 
ReLU. The PFRB block enhances the image quality by 
considering the prominent features. Here throughout the 
model same kernel size has been used i.e. 3× 3 kernel. 
The final image size and the input image size is same. The 
128× 128 image size has been considered throughout the 
experiment by keeping the stride and padding one in every 
convolution layer. In order to extract more complete fea-
tures and thus improve the model potential.

 Training strategy
The mixed data training approach for deep network con-
struction has been proposed here. The data set contains 
both CT and X-ray image data for the training. The basic 
goal of mixed training is for the model to learn a number of 
desirable properties. The features change drastically when a 
clinical image is added with a certain type of noise. Because 

of this diversity in noisy images, it has been experimented 
with here to train the model with mixed clinical images. The 
results found here are also promising. Also, the DMF-Net is 
trained separately with CT images, augmented CT images, 
X-ray images, and augmented X-ray images with normally 
distributed specific noise levels (15, 20, 25, respectively) 
and blind noise. The model is trained upto 60 epochs with 
dynamic learning rate (α=0.001, 0.0001, 0.00001, 0.000001)
has been considered for the smooth convergence. Learning 
rate ( α = 0.001 (upto 20 epoch), 0.0001 (20 <epoch ≥ 40), 
0.00001 (40< epoch ≥50) and 0.000001 (50< epoch≥60). 
The contribution of low, mid, and high-level aspects was 
properly considered by integrating the features from the 
last three layers to determine noise.

Features from the last three-layer have been added to 
find the net feature f(L).

(5)
fDMF−Net (L) = fDMF−Net (L17)+ fDMF−Net (L18)+ fDMF−Net (L19)

Fig. 4  Original CT image with noisy(Nsp=15,20,25 and Nbl =0 to 55) and denoised or cleaned image by DMF-Net where (a and c) shows for specific 
noise without and with augmentation in (b and d) shows for blind noise without and with augmentation; red circle and green box to observe inter 
lungs area and left lungs respectively with original image
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where L17, L18, L19 are layer 17, layer 18 and layer 19. 
The final feature after convolution is considered as the 
final noise feature fDMF−Net(N ) . The predicted denoised 
image(IP ) has been determined between the input noisy 
image(Inoisy ) and f(N).

Finally, the difference between the original noise-free 
picture (I) and the anticipated noise-free image is com-
puted ( IP ). After the loss is calculated, the optimization 
is done using adam optimizer [41] which is considered 
during training. The number of parameters get optimized 
due to the noise features extracted during training. How-
ever, the dynamic learning rate with respect to different 
epochs helps in faster convergence. Because the loss cal-
culated in gradient gets transmitted due to the learning 

(6)IP = Inoisy − fDMF−Net(N )

(7)Loss(L) = �I − IP�
2

function, reflecting the variation between the original 
noise and predicted noise with the parameter.

Experimental results
Details about the data as well as the implementation
Here our data folder contains CT image files as well as 
X-Ray image files. CT files of counts 1647 are collected 
from kaggle.com [42, 43] and GitHub.com [44], each one of 
grayscale lung CT slices of size 128× 128 . The data folder 
is again divided in two folders as CT-training and CT-
testing. Randomly the files are chosen from the training 
folder containing 1352 files with a ratio of 90:10 as training 
: validation and 295 files for testing. 1550 lungs X-Ray files 
are collected from kaggle.com [45] and distributed in two 
folders as X-Ray-training with 1292 files and X-Ray-testing 
with 258 files. Files from X-Ray-training folder are again 
chosen randomly as training : validation with ratio 90:10.

Fig. 5  PSNR and SSIM w.r.t. Epoch by using DMF-Net without augmentation and with specific noise in (a, b) and blind noise in (c, d) for noise level 
15,20 and 25
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Our deep model DMF-Net is developed in PyTorch. 
Here Adam optimizer is set for training the network 
with starting learning rate of 0.001 and it is scaled down 
by 10 after 20, 40 and 50 epochs. Training is done with 
60 epochs with a batch size of 32. After training the net-
work, the states of the model for 60 epochs have been 
saved with 60 .pth files. The system set up for the train-
ing and testing is NVIDIA-SMI 460.32.03 and CUDA 
version 11.2 with Tesla T4 and 32 GB RAM.

Evaluation metrics
The peak signal to noise ratio (PSNR) and the structural 
similarity index (SSIM) are employed as assessment criteria 
in this study. The mathematical formulation of PSNR is

(8)PSNR = 20 log10
MAXf

(MSE)
1
2

where, peak signal to noise ratio (PSNR) is the ratio of the 
maximum pixel value of a noise-free image to the maxi-
mum pixel value of the image. and (MSE)

1
2 is the root 

mean square error.

where I(i,j) is the pixel data of our noise free image, I ′(i, j) 
represents the pixel data of denoised image predicted 
by model. p: total rows of image data pixels and q: total 
columns of image data pixels. SSIM measures the inces-
sant difference between similar images. It never conclude 
about the original or denoised image.

(9)MSE =
1

pq

p−1
∑

0

q−1
∑

0

∥

∥I(i, j)− I ′(i, j)
∥

∥

2

(10)SSIM(I , I ′) =
(2µIµI ′ + c1)(2σII ′ + c2)

(µ2
I + µ2

I ′ + c1)(σ
2
I + σ 2

I ′ + c2)

Fig. 6  Original X-Ray image with noisy(Nsp=15,20,25 and Nbl =0 to 55) and denoised or cleaned image by DMF-Net where (a and c) shows 
for specific noise without and with augmentation in (b and d) shows for blind noise without and with augmentation; red box and green box 
to observe left lungs and right lungs area respectively with original image
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where µI and µI ′ are mean of image I and I ′ , σI and σI ′ are 
standard deviation(s.d.) of image I and I ′ and σII ′ is the 
covariance of I and I ′ with c1c2 as constants.

To observe the performance, DMF-Net is trained with 
specific noise and blind noise. Specific noise and blind 
noise has been normalized with noise level Nsp(15, 20, 
25) and Nbl (0 to 55) for creating the noisy X-Ray as well 
as CT image. The table  2 shows the PSNR and SSIM 
resulted by training the model with CT image, X-Ray 
image and mixed images separately.

De‑noising CT image where DMF‑Net trained with CT 
image
In this section, DMF-Net trained with 128× 128 CT 
image files in the CT-training folder containing 1352 
files with specific noise(Nsp ) and blind noise(Nbl ). The 
states of the model is saved for 60 epochs for evaluating 

the model with PSNR and SSIM. Again the model gets 
trained with augmented CT images created by flipping 
the image right-left and up-down with angle 90◦,180◦ 
and 270◦ randomly, generating 2458 image files. Also 
the states of the model for 60 epochs has been saved 
for evaluating the model with PSNR and SSIM. With-
out augmentation the trained model for a test data of 
295 images achieved average PSNR and SSIM for Nsp

=15,20 and 25 with [(26.66,0.7973),(27.09,0.8082) and 
(24.96, 0.7444)] respectively and for Nbl =0 to 55 with 
[(26.66,0.7973),(27.10, 0.8082),(24.96, 0.7444)] respec-
tively as shown in Fig.  3(a) and (b). With augmentation 
the model after 60 epochs results average PSNR and 
SSIM for Nsp=15,20 and 25 with [(28.23,0.8294),(27.11, 
0.7934) and (26.57,0.7787)] respectively and for Nbl =0 
to 55 with [(28.23,0.8294),(27.11, 0.7934), (26.57,0.7787)] 
respectively as shown in Fig.  3(c) and (d). The plot for 
PSNR and SSIM w.r.t. epochs are described in Fig. 3 with 

Fig. 7  PSNR and SSIM w.r.t. Epoch by using DMF-Net without augmentation and with specific noise in (a, b) and blind noise in (c, d) for noise level 
15,20 and 25



Page 11 of 15Nayak et al. BMC Medical Imaging          (2023) 23:150 	

Fig. 8  Original CT and X-Ray image with noisy(Nsp=15,20,25 and Nbl =0 to 55) and denoised or cleaned image by DMF-Net where same images 
of Figs. 4 and 6 are shown with specific noise and blind noise

Table 3  Multiple methods were used to acquire PSNR and SSIM measurements at varying CT and X-Ray noise levels (blind and 
specified noise levels); the best results are highlighted in bold

Trained Methods Noise(σ)=15 Noise(σ)=20 Noise(σ)=25

PSNR SSIM PSNR SSIM PSNR SSIM

Specific Noise BM3D [20] 21.99 0.3778 18.63 0.2671 16.08 0.1381

WNNM [26] 21.92 0.3669 18.23 0.2356 16.09 0.1345

NLM [27] 24.61 0.7290 22.32 0.6431 20.29 0.5430

BLS-GSM [28] 30.60 0.8581 29.09 0.8146 27.99 0.7766

RED-CNN [29] 30.46 0.8878 23.98 0.7109 18.19 0.6691

Autoencoder(ANN) [30] 30.30 0.8091 22.11 0.7209 21.34 0.6788

CNN and Wavelets [22] 30.21 0.8912 23.12 0.7217 21.87 0.6823

Non-local means [31] 28.71 0.8371 23.28 0.7154 18.76 0.6544

Blind Noise Freq. Domain FFT [32] 29.85 0.8822 22.91 0.6992 17.21 0.6141

Adapt. Tensor, PCA [33] 29.46 0.8731 22.74 0.6963 18.31 0.6129

Coeff. Driven Variation [46] 28.75 0.8563 22.41 0.6871 17.78 0.5821

Phase-preserving [34] 28.13 0.8429 22.09 0.6776 17.13 0.6011

Optimal Weight [35] 30.17 0.8879 23.08 0.7050 - -

Wavelet and Sparse [47] 30.23 0.8078 22.52 0.7053 - -

DMF-Net(proposed) 31.03 0.8896 29.95 0.8637 29.19 0.8442
DMF-Net(proposed) 29.30 0.8582 28.37 0.8270 27.53 0.8020
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different noise values. The resulted denoised image has 
been displayed in Fig. 4 for different noise type and the 
peculiar areas has been selected to compare with original 
image.

De‑noising X‑Ray image where DMF‑Net trained 
with X‑Ray image
In this section, DMF-Net trained with 128× 128 X-Ray 
image files in X-Ray-training folder containing 1292 files 
with specific(Nsp ) and blind(Nbl ) noise observing PSNR 
and SSIM. Also the model performance is observed for 
augmented images generated by flipping right-left, up-
down with angle 90◦,180◦ and 270◦ randomly, generating 

2348 image files. The model is trained for 60 epochs. The 
trained model for a test data of 258 images achieved aver-
age PSNR and SSIM for Nsp=15,20 and 25 with [(30.94, 
0.8848), (29.72,0.8560) and (28.72,0.8282)] respec-
tively and for Nbl =0 to 55 with [(28.59,0.8445), (27.72, 
0.8185),(26.94, 0.7926)] respectively as shown in Fig. 5(a) 
and (b). But with augmentation the model after 60 epochs 
results average PSNR and SSIM for Nsp=15,20 and 25 with 
[(31.03,0.8896), (29.95, 0.8637) and (29.19,0.8442)] respec-
tively and for Nbl =0 to 55 with [(28.92,0.8525),(28.01, 
0.8240),(27.19, 7954)] respectively as shown in Fig.  5(c) 
and (d) and some resulted images are shown in Fig. 6 for 
the visual comparison of some peculiar areas.

Fig. 9  PSNR and SSIM w.r.t. input CT and X-Ray, where (a, b) shows result when the model trained and validated with specific noise(σ=15,20 
and 25) and (c, d) shows result when the model trained with blind noise and validated with noise level(σ=15,20 and 25)
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De‑noising both CT and X‑Ray image where DMF‑Net 
trained with mixed image
In this section, DMF-Net trained with mixed data set 
of 128× 128 X-Ray image and CT images. The data set 
contains 1292 X-Ray image files and 1365 CT image 
files. The PSNR and SSIM has been observed for the 
model after training with specific noise(Nsp ) and blind 
noise(Nbl ). The model trained only without augmenta-
tion for 60 epochs and it is tested with 553 X-Ray and 
CT-images with Nsp=15, 20 and 25 resulting average 
PSNR and SSIM with [(30.24, 0.8794), (28.91,0.8445) 
and (28.32,0.8314)] respectively as shown in Fig.  7(a) 
and (b). Also trained with blind noise Nbl =0 to 55 
resulting average PSNR and SSIM with [(29.30, 
0.8582), (28.37,0.8270) and (27.53,0.8020)] respectively 
as shown in Fig. 7(c) and (d). The input CT and X-Ray 
images with output denoised images has been shown 
in Fig. 8.

State of art comparision
The proposed model DMF-Net compared with other 
de-noising models like BM3D [20], WNNM [26],NLM 
[27], BLS-GSM [28], RED-CNN [29], autoencoder 
[30], CNN-Wavelets [22], non-local means [31], fre-
quency domain FFT [32], adaptive tensor with PCA 
[33], coefficient driven variation [46], phase pre-
serving [34], optimal weight [35] and wavelet with 
sparse [30] . The experimental results on specified 
and blind noise levels are shown in Table  3 to verify 
the suggested model’s performance. The above meth-
ods are evaluated with three different noise levels of 
15, 20 and 25. At higher noise levels, our model out-
performed the BM3D, WNNM, NLM, and BLS-GSM 
techniques in terms of PSNR and SSIM. Also our 
model performance has been evaluated with different 
medical images like X-Ray and CT as in Table 2, it is 
found that the performance is better in different two 
different types of images taken separately or mixed 
with blind noise and in specific noise. All the result 
has been compared with different existing models and 
our proposed model has shown the improved perfor-
mance over all these.

Conclusion
In this work, we developed DMF-Net with a strategy of 
training the network with for de-noising CT and X-Ray 
images. Here the network is designed with dilated feature 
extraction block (DEFB), cascaded feature block(CFB) 
and prominent feature extraction block(PFEB) block. 
The model consist of total 26 convolutional block 
where 18 convolution+BN+ReLU(green box), 3 dilated 
convolution+ReLU (violet box), 4 convolution(orange 
box), 1 convolution+ ReLU (navy blue box) and Tanh 

function. The features of the last layers in the cascaded 
feature block are added with the intention to consider 
the low, mid and high-level features for evaluating the 
net noise. The clean image is extracted from the promi-
nent feature extraction block after several convolutions. 
Here the model is trained and tested separately for CT 
images, X-Ray images and mixed images for specific 
and blind noise. The Fig. 9 shows result when the model 
trained and validated with specific noise(σ=15,20 and 
25)(Fig. 9(a), (b)) and Fig. 9(c), (d) shows result when the 
model trained with blind noise and validated with noise 
level(σ=15,20 and 25). The network was trained for 60 
epochs with just a dynamic decaying learning rate, and it 
was noticed that in the case of blind noise, mixed images 
perform better than individual images with and without 
augmentation and that a good result can also be found in 
specific noise when using peak signal-noise ratio (PSNR) 
and structural similarity index measurement (SSIM) 
as evaluation metrics. As a consequence, the proposed 
model can learn features taken from mixed images and 
satisfactorily denoise both CT and X-ray images. Situ-
ations where sufficient data is not readily available in 
advance for training, or when existing data must be 
modified to account for novel patterns, are ideal appli-
cations for real-time machine learning. The preserved 
state of the trained DMF-Net can be deployed there as 
an event-driven model to provide real-time generation of 
clean images with levels of precision.
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