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Abstract 

Background  Cervical cancer patients receiving radiotherapy and chemotherapy require accurate survival prediction 
methods. The objective of this study was to develop a prognostic analysis model based on a radiomics score to pre-
dict overall survival (OS) in cervical cancer patients.

Methods  Predictive models were developed using data from 62 cervical cancer patients who underwent radical 
hysterectomy between June 2020 and June 2021. Radiological features were extracted from T2-weighted (T2W), 
T1-weighted (T1W), and diffusion-weighted (DW) magnetic resonance images prior to treatment. We obtained 
the radiomics score (rad-score) using least absolute shrinkage and selection operator (LASSO) regression and Cox’s 
proportional hazard model. We divided the patients into low- and high-risk groups according to the critical rad-
score value, and generated a nomogram incorporating radiological features. We evaluated the model’s prediction 
performance using area under the receiver operating characteristic (ROC) curve (AUC) and classified the participants 
into high- and low-risk groups based on radiological characteristics.

Results  The 62 patients were divided into high-risk (n = 43) and low-risk (n = 19) groups based on the rad-score. Four 
feature parameters were selected via dimensionality reduction, and the scores were calculated after modeling. The 
AUC values of ROC curves for prediction of 3- and 5-year OS using the model were 0.84 and 0.93, respectively.

Conclusion  Our nomogram incorporating a combination of radiological features demonstrated good performance 
in predicting cervical cancer OS. This study highlights the potential of radiomics analysis in improving survival predic-
tion for cervical cancer patients. However, further studies on a larger scale and external validation cohorts are neces-
sary to validate its potential clinical utility.
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Background
Cervical cancer is a leading cause of cancer-related 
deaths in women globally [1] and a significant public 
health concern in developing countries [2]. Early detec-
tion and treatment are crucial [3, 4]. Surgery, combined 
with standard treatments such as radiotherapy and 
chemotherapy, has potential therapeutic value [5–7]. 
Unfortunately, approximately 1 in 3 patients will experi-
ence varying degrees of cancer recurrence [8], and the 
overall prognosis has not improved significantly. In the 
2018 edition of the International Federation of Gynecol-
ogy and Obstetrics (FIGO) staging system for cervical 
cancer, imaging examination plays a central role [9]. The 
revised guidelines state that cervical cancer is best evalu-
ated through imaging, and individual imaging or patho-
logical analysis can be used to stage the cancer. Magnetic 
resonance imaging (MRI) is currently the standard tech-
nique for local staging and prognostic evaluation of cer-
vical cancer before treatment [10–13]. MRI is effective in 
determining the cancer stage for treatment optimization 
by evaluating parauterine invasion, tumor subtype and 
grade, and lymph node metastasis (LNM). Additionally, it 
can predict tumor recurrence.

Several studies have utilized MRI to predict parame-
trial invasion before surgery, with T2-weighted imaging 
(T2WI) and a combined analysis with diffusion-weighted 
imaging (DWI) considered effective tools to rule out 
invasion [14]. In recent years, radiomics has become 
increasingly utilized in medical fields and has been 
reported to improve the accuracy of tumor diagnosis 
and treatment response assessment by providing high-
dimensional features extracted from digital medical data 
in a noninvasive and cost-effective manner [15, 16]. Radi-
omics can also provide potential predictive information 
on histological tumor differentiation, LNM, and lym-
phovascular lumen invasion in cervical cancer [17–19]. 
However, to our knowledge, no published studies have 
focused on the predictive ability of a combined radiology 
model [T1-weighted imaging (T1WI), T2WI, and DWI] 
on cervical cancer survival.

Therefore, the aim of this study is to validate radio-
logical features with clinical value in predicting the 
overall survival (OS) of cervical cancer patients who 
underwent surgery in combination with radiotherapy and 
chemotherapy.

Methods
We included 62 patients with cervical cancer who were 
treated between June 2020 and June 2021 at the Affiliated 
Hospital of Southwest Medical University, Luzhou City, 
Sichuan Province, China. We extracted and analyzed 
all patient data in accordance with the Declaration of 
Helsinki, and obtained ethical approval from the Ethics 

Committee of the Affiliated Hospital of Southwest Medi-
cal University for the retrospective data analysis. Cervi-
cal cancer diagnosis was based on FIGO (2018 edition) 
guidelines. To be eligible for the study, patients had to 
meet the following criteria: (I) confirmed diagnosis of 
cervical cancer by pathology between IB and IVA based 
on the FIGO 2018 staging; (II) underwent enhanced 
pelvic MRI within 2  weeks before treatment; and (III) 
underwent radical hysterectomy and bilateral pelvic 
lymph node dissection or combined radiotherapy and 
chemotherapy. Patients were excluded if they met any of 
the following criteria: (I) received neoadjuvant chemo-
therapy or radiotherapy; (II) diagnosed with other simul-
taneous cancer; or (III) lacked clinical data.

All patients received external beam radiation ther-
apy (EBRT) [95% of the planned target volume (PTV) 
50.4 Gy/28 times] and high-dose rate intracavitary radio-
therapy (HDR-ICR) (30–36 Gy/5–6 times) in conjunction 
with weekly chemotherapy. The end time of radiother-
apy was taken as the reference time point, and OS was 
defined as the interval from the date of treatment to the 
date of cancer-related death.

Image acquisition
MRI scans were performed using a 3.0  T MR scanner 
(Achieva 3.0  T, Philips Healthcare, Hamburg Germany; 
MAGNETOM Prisma, Siemens Healthineers, Erlangen, 
Germany) before treatment. No patients had an absolute 
contraindication to MRI.

The scan range was set to encompass the whole pel-
vis and the scan location line was consistent. The scan 
sequence included non-fat suppression T1WI, non-fat 
suppression T2WI, and DWI. The main scan param-
eters were as follows: (I)T1WI images:repetition time/
echo time (TR/TE), 600/11  ms;field of view (FOV), 
250 × 218  mm;the number of excitations (NEX), 2;flip 
angle,150;pixels spacing,0.390 × 0.390  mm;slice thick-
ness, 4  mm;spacing between slices,4.8  mm;acquisition 
matrix, 640–560. (II)T2WI cross-section: fast rotation 
echo [fast spin echo (FSE)]-XL, echo time (TE) 80  ms, 
repetition time (TR) 5,182  ms (average), slice thickness 
5 mm, layer interval 1 mm, field of view (FOV) 26–30 cm, 
matrix 352 × 320; sagittal plane: FSE-XL, TE 102 ms, TR 
4,138  ms (average), layer thickness 4  mm, layer interval 
0.4 mm, FOV 24–32 cm, matrix 320 × 288; and (III) DWI 
cross-section: a single-shot echo planar imaging (EPI) 
sequence, TE minimum, TR 3,500  ms, FOV 26–30  cm, 
matrix 160 × 160  mm, layer thickness 8  mm, interlayer 
1 mm, excitation times [number of excitations (NEX)] 4, 
diffusion-sensitive gradient b = 0 s/mm2 and b = 1,000 s/
mm2.

The original images were transferred to the post-
processing workstation (GE 4.5 Workstation), and 
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apparent diffusion coefficients (ADCs) were recon-
structed using FuncTool software. For region of inter-
est (ROI) drawings, all images were transferred into 
3D Slicer software. An MRI diagnostic physician (with 
4  years of experience) determined the tumor location 
and boundary on DWI according to each sequence image 
and drew all the tumor areas layer by layer. All ROIs were 
individually confirmed or revised by a deputy chief physi-
cian with more than 10 years’ experience in gynecologi-
cal MRI diagnosis. The position of the ROI drawn on the 
DWI was matched with the ADC.

For image feature extraction, ROI was stored as a 
three-dimensional cuttable image, and automatic extrac-
tion was performed using the MATLAB (R2011b, Math-
Works) platform and the program developed in this 
research. The combined features included 851 first-order 
statistical features, shape, texture, and wavelet features.

Statistical analysis
Demographic data of patients were divided into classi-
fied and numerical variables. Pearson’s Chi-square test 
or accurate Fisher’s test was used to compare classifica-
tion variables between groups and the Mann–Whitney 
U test was applied for continuous variables. All statistical 
analyses were performed using R software version 3.6.3 
(R Statistical Computing Foundation, Vienna, Austria) 
and X-Tile software version 3.6.1 (Yale University School 
of Medicine, New Haven, CT, USA). Extracted radiomics 
data were standardized using Z-score. The least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion model was used for data dimensionality reduction, 
feature selection, and radiological feature construction 
to select the most valuable predictive radiological fea-
tures from tumor images. A nomogram was developed to 
determine survival outcomes based on radiological fea-
tures, and a multivariate Cox regression risk model was 
established. A nomogram, also known as a nomograph, 
is a graphical method of evaluating complex functions. In 
this study, a nomogram was constructed using radiation 
features to assess patient survival. This method visually 
represents the value range of different variables and their 
contribution to the value of risk. The “glmnet” package 
in R software was used to select radiological characteris-
tics consistent with the Cox proportional model, and the 
“survival” and “RMS” packages in R software were used 
to generate the multivariate Cox regression risk model, 
nomogram, and correction curve, respectively. The area 
under the receiver operating characteristic (ROC) curve 
(AUC) was used to evaluate the performance of the nom-
ogram model. Using a linear combination of selected 
radiological features weighted by their respective coef-
ficients, the radiomics score (rad-score) for each patient 
was calculated. The cut-off value of the rad-score was 

determined based on X-Tile software and used to classify 
patients into high- and low-risk groups.

Results
The clinical characteristics of the 62 enrolled patients 
are presented in Table 1. All of the 62 patients included 
in the study were female. The average patient age was 
53.27 ± 8.29 years, 41 patients (66.1%) were 50 years old 
or above, while 21 patients (33.9%) were younger than 
50. Regarding cancer stage, 47 patients (75.8%) were at 
stage IIB, while 4 patients (6.5%) were at stage IIIB. The 
remaining 10 patients (17.7%) were stage in another cat-
egory. At the time of analysis, 48 patients (77.4%) were 
still alive. The median survival time was 24  weeks (95% 
confidence interval). and median follow-up time was 
30 months (6–96 months). Kaplan-May’s survival plot is 
shown in Fig. 1.

All 851 radiation features were extracted, including: 
shape (descriptors of 2D and 3D size and shape of the 
ROI, which were independent of the grayscale intensity 
distribution in the ROI and therefore calculated solely 
based on nonderived images and masks); first-order fea-
tures describing the distribution of voxel intensity in the 
image region defined by the mask by common basic met-
rics; gray-level cooccurrence matrix (GLCM) features 
describing the second-order joint probability function 

Table 1  Demographic and baseline clinical data of study 
subjects

Characteristics N (%)

Age (years)

   ≥ 50 41 (66.1)

   < 50 21 (33.9)

Stage

  IB 1 (1.6)

  IIA 5 (8.1)

  IIB 47 (75.7)

  IIIA 4 (6.5)

  IIIB 4 (6.5)

  IVA 1 (1.6)

Risk group

  Low risk group 6 (9.6)

  High risk group 56 (90.4)

Maximal diameter of tumor (cm)

   < 3 8 (12.8)

   ≥ 3 and < 4 14 (22.6)

   ≥ 4 and < 5 12 (19.5)

   ≥ 5 28 (45.1)

Lymph node status

  Negative 46 (74.2)

  Positive 16 (25.8)
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of the image region constrained by the mask; gray-level 
dependence matrix (GLDM) features quantifying the gray 
correlation in the image; gray-level run-length matrix 
(GLRLM) elements, quantitatively defined as the length 
of consecutive pixels with the same gray scale value; gray-
level size zone matrix (GLSZM) elements (the grayscale 
area in the quantized image); and neighboring gray tone 
difference matrix (NGTDM) elements quantifying the dif-
ferences between the grayscale and average grayscale val-
ues of adjacent pixels within a certain distance.

Among the 851 radiomics features extracted from 
T1WI, T2WI, and DWI, potential features were selected 
based on their coefficients in the LASSO logistic regres-
sion model in the primary cohort (Fig.  2a). At λ = 0.12, 
the error of the model was minimum, and the charac-
teristic number with nonzero coefficient was 4. High-
throughput radiological features were reduced by LASSO 
regression (Fig.  2). Four radiological features were 
extracted for OS analysis, including short-range low gray 
emphasis (SRLGLE) of wavelet-HLL (H = high frequency 
band, L = low frequency band) firstorderMean (feature 1), 
wavelet-HLLfirstorderMedian (feature 2), wavelet-LLL-
gldmDependenceVariance (feature 3), and originalglem-
InverseVariance (feature 4).

The LASSO-Cox regression approach was used to 
select and screen 4 radiomics features (Fig. 3). The radi-
omics score was calculated according to the feature 

name and corresponding weight coefficient (Table  2). 
Features 1–4 represent radiomic features calculated via 
rad-score using the following formula [1]:

The patients in the study were stratified into two 
groups, based on their rad-score: high-risk (rad-
score ≥  − 0.1) and low-risk (rad-score <  − 0.1) groups. 
The survival curves for these two groups are presented in 
Fig.  4 (P < 0.000). Additionally, a line diagram depicting 
the combined radiological features is presented in Fig. 5.

Use AUC to evaluate the predictive ability of the 
model. As shown in Fig.  6. For 3-year OS prediction, 
AUC was 0.84 (95% confidence interval: 0.69–0.89), 
sensitivity was 0.81 (95% confidence interval: 0.76–
0.86), specificity was 0.50 (95% confidence interval: 
0.37, 0.63), accuracy was 0.74 (95% confidence interval: 
0.70–0.79), 5-year OS prediction AUC was 0.93 (95% 
confidence interval: 0.85–0.98), sensitivity was 0.85 
(95% confidence interval: 0.79–0.91), specificity was 
0.59 (95% confidence interval: 0.47, 0.71), The accuracy 
is 0.81 (95% confidence interval: 0.78–0.86).

RiskScore = − 0.115376 × originalglcmInverseVariance

+ 0.107882 × wavelet −HLLfirstorderMean

+ 0.099625 × wavelet −HHLfirstorderMedian

+ 0.167106 × wavelet − LLLgldmDependenceVariance

Fig. 1  Kaplan–Meier survival plot of 62 enrolled patients
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Discussion
This study aimed to assess the potential prognos-
tic value of MRI radiological features in cervical can-
cer patients who underwent surgery combined with 
radiotherapy and chemotherapy. Accurate prediction 

of disease progression after treatment is crucial in 
clinical practice, as it informs the selection of appro-
priate adjuvant therapy and helps improve patient 
outcomes [20]. However, disease progression can 
vary significantly among patients with similar clinical 

Fig. 2  LASSO coefficient profiles of the 851 texture features. a Selection of radiomic features using the LASSO regression method. Optimal 
penalization coefficient lambda (λ = 0.12) in the LASSO model tuned using tenfold cross-validation and the minimum criterion (b) LASSO. LASSO, 
least absolute shrinkage and selection operator

Fig. 3  Prognostic radiomics features selected using the LASSO-Cox algorithm. LASSO, least absolute shrinkage and selection operator
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profiles, underscoring the need for reliable prognostic 
biomarkers.

MRI is known for its exceptional sensitivity to 
changes in biological tissue microstructure [21–23]. It 
enables noninvasive assessment of various tumor char-
acteristics, including cell density and hypoxia, which 

are indicators of tumor heterogeneity, such as necrosis 
and increased cell density. Based on these character-
istics, we hypothesized that MRI radiological features 
could be used effectively to predict tumor progression 
[24, 25]. Initially used to distinguish between tumor and 
normal cervical tissues, MRI has evolved as a promising 
diagnostic tool for detecting pelvic LNM and monitor-
ing treatment response in patients with cervical cancer 
[26, 27]. With the expansion of its clinical applicabil-
ity, an MRI-based candidate index has recently been 
proposed for predicting clinical outcomes in cervical 
cancer patients. However, the results obtained from 
various studies have been highly variable. For instance, 
some studies have reported higher recurrence rates 
associated with higher ADC values [28], while others 
have shown that lower ADC values are better predic-
tors of recurrence than well-established prognostic 

Table 2  The 4 features screened based on the LASSO-Cox 
regression model

LASSO least absolute shrinkage and selection operator

Feature Coefficient

OriginalglcmInverseVariance  − 0.115376

Wavelet-HLLfirstorderMean 0.107882

Wavelet-HHLfirstorderMedian 0.099625

Wavelet-LLLgldmDependenceVariance 0.167106

Fig. 4  Survival curve of the high- and low-risk groups based on radiomics score classification. HR, hazard ratio; CI, confidence interval

Fig. 5  Nomogram of the combination of radiomic features
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factors such as parauterine invasion or lymphovascular 
invasion (LVI) [29, 30]. Although radiomics analyses 
are becoming increasingly mature, there are some tech-
nical limitations. Many radiomics features, increasingly 
extracted via radiomics software packages, are sensitive 
to variations based on image acquisition, reconstruc-
tion, and processing procedures; therefore, different 
feature-generation hyperparameters, fusion techniques, 
and segmentation methods may produce variable radi-
omics features. The development and application of 
image fusion and other technologies will effectively 
improve the effect of image preprocessing [31].

This variability in results highlights the need for fur-
ther studies to establish the prognostic value of MRI-
based candidate indices in cervical cancer. It is crucial to 
determine the most reliable MRI-based parameters for 
predicting clinical outcomes, as this could help identify 
patients at high risk of recurrence, guide treatment deci-
sions, and improve overall patient outcomes. Nonethe-
less, the growing body of research on the use of MRI in 
cervical cancer holds great promise for improving diag-
nosis, monitoring, and management of this complex 
disease.

Prior research has demonstrated the potential util-
ity of radiology in predicting survival of cervical cancer 
patients, with reported accuracy higher than that of tra-
ditional clinical factors [32–35]. However, the sample 

sizes of these studies were relatively small and did not 
focus on early cervical cancer cases treated with surgery. 
As such, the clinical relevance of these findings is limited, 
given that patient treatment is a strong predictor of sur-
vival. Moreover, due to the lack of clinical consensus on 
the use of MRI for this indication, there is a need for fur-
ther research in this area.

Our study provides reliable evidence for the application 
of imaging in prognosis and offers key insights for further 
research. Our radiomics scores, based on LASSO-Cox, 
demonstrated good predictive performance for estimat-
ing OS. These findings may assist in identifying patients 
with poor survival prognosis who may benefit from 
more comprehensive investigation and active treatment 
options, aiding clinical decision-making and improving 
patient outcomes. Radiomics offers a promising approach 
to extract useful imaging features from medical images 
noninvasively, providing potential diagnostic, therapeu-
tic, and prognostic information [26, 36–42].

The prediction model developed in this study aimed to 
predict the 3- and 5-year OS of patients with early-stage 
cervical cancer who underwent surgery. The model’s per-
formance was evaluated using the AUC. The ROC curve 
analysis showed that the 3-year OS prediction model had 
an AUC value of 0.84, indicating moderate discrimina-
tion ability in distinguishing between patients who sur-
vive and those who do not survive at 3  years. Similarly, 

Fig. 6  ROC curve of the model for prediction of patient OS at 3 and 5 years. AUC, area under the ROC curve; ROC, receiver operating characteristic; 
CI, confidence interval; OS, overall survival
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the 5-year OS prediction model had an AUC value of 
0.93, indicating excellent discrimination ability in dis-
tinguishing between patients who survive and those 
who do not survive at 5  years. These findings suggest 
that the prediction model has reasonably accurate pre-
dictive ability, which may have clinical utility in guiding 
treatment decisions and patient counseling. The derived 
model seems to predict the outcome more accurately 
than the FIGO staging system. Although this nomogram 
must be externally validated before it can be applied, it 
may be valuable in terms of choosing adjunctive treat-
ment, counseling patients, and planning clinical trials. 
However, it is important to note that the accuracy of the 
model may vary depending on the specific patient popu-
lation and clinical setting in which it is used.

MRI radiological models have shown to be useful for 
predicting preoperative LNM and LVI status in cervical 
cancer patients [43, 44]. In addition, radiological features 
derived from MRI scans can be effectively used to predict 
survival of early-stage cervical cancer patients [45, 46]. 
In this study, we used the rad-score to classify patients 
into high- and low-risk groups. Our findings showed that 
higher rad-scores were associated with poorer OS, sug-
gesting that low-risk patients may undergo unnecessary 
radical hysterectomy, while systemic adjuvant therapy 
may be more beneficial for patients with a higher risk 
of recurrence and metastasis. These results are a critical 
step towards tailoring treatments to specific clinical and 
radiological characteristics of high- and low-risk patients 
with early-stage cervical cancer.

Among the 851 imaging signs, we found that 4 T1W 
images were predictive of OS. This highlights the poten-
tial benefits of radiomics methods in mining high-
dimensional information that is difficult to interpret, 
and the advantage of using T1W images over T2W and 
DWI images. While FIGO staging and LNM are com-
monly used in prognostic assessment of cervical cancer, 
their predictive power is limited [47–50]. Previous stud-
ies have also reported the efficacy of ADC histograms in 
assessing the prognosis of cervical cancer, but the results 
are varied. Radiomics is an emerging quantitative method 
that aims to use advanced technologies for noninvasive 
capture of tumor phenotypic characteristics, which are 
more likely to facilitate prediction of clinical prognosis of 
patients before treatment.

Our study provides valuable insights into the poten-
tial clinical utility of MRI radiological features as a 
prognostic tool for cervical cancer patients receiving 
combined treatment. The results suggest that these 
features could help identify patients at high risk of dis-
ease progression, enabling clinicians to tailor treatment 
regimens accordingly. However, the study had some 

limitations, including the small sample size of the train-
ing and validation sets. Further external prospective 
verification with larger sample sizes is needed. Addi-
tionally, our study only focused on radiomics analysis 
of ADC maps, and further in-depth investigations of 
multiparameter fusion techniques, including dynamic 
enhancement of tumor blood supply-related param-
eters, are warranted.

In conclusion, our study demonstrates the clini-
cal value of the radiomics model established using the 
ADC parameter map for predicting long-term OS in 
cervical cancer patients. MRI-based radiological fea-
tures have the potential to serve as a valuable prognos-
tic tool for clinicians in managing patients with cervical 
cancer undergoing surgery in conjunction with radio-
therapy and chemotherapy.
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