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Abstract
Objectives  This study evaluated the radiologic and radiomic features extracted from magnetic resonance imaging 
(MRI) in meningioma after radiation therapy and investigated the impact of radiation therapy in treating meningioma 
based on routine brain MRI.

Methods  Observation (n = 100) and radiation therapy (n = 62) patients with meningioma who underwent MRI were 
randomly divided (7:3 ratio) into training (n = 118) and validation (n = 44) groups. Radiologic findings were analyzed. 
Radiomic features (filter types: original, square, logarithm, exponential, wavelet; feature types: first order, texture, 
shape) were extracted from the MRI. The most significant radiomic features were selected and applied to quantify the 
imaging phenotype using random forest machine learning algorithms. Area under the curve (AUC), sensitivity, and 
specificity for predicting both the training and validation sets were computed with multiple-hypothesis correction.

Results  The radiologic difference in the maximum area and diameter of meningiomas between two groups was 
statistically significant. The tumor decreased in the treatment group. A total of 241 series and 1691 radiomic features 
were extracted from the training set. In univariate analysis, 24 radiomic features were significantly different (P < 0.05) 
between both groups. Best subsets were one original, three first-order, and six wavelet-based features, with an AUC 
of 0.87, showing significant differences (P < 0.05) in multivariate analysis. When applying the model, AUC was 0.76 and 
0.79 for the training and validation set, respectively.

Conclusion  In meningioma cases, better size reduction can be expected after radiation treatment. The radiomic 
model using MRI showed significant changes in radiomic features after radiation treatment.
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Introduction
Meningioma is the most common primary brain tumor 
in adults and is mostly considered benign by the World 
Health Organization (WHO) histopathological criteria 
(WHO Grade 1) [1, 2]. Medical imaging plays a funda-
mental part in the differential diagnosis and treatment 
plan of central nervous system tumors, including menin-
giomas. If a meningioma is judged as small, stable, and 
benign, the wait-and-see method, i.e., observing with a 
long-term follow-up, may be an ideal and cost-effective 
option. Conversely, if the growth rate is high or malig-
nancy is suspected on genotyping, early surgical resec-
tion is strongly recommended, even if the size is small.

Radiotherapy is sometimes the primary treatment for 
meningioma. It is often performed if surgery is contrain-
dicated because of tumor proximity to critical nerves or 
vessels or due to the patient’s concerns about the surgery 
or poor health. Additionally, radiotherapy is performed 
as adjuvant therapy to destroy any remaining tumor 
cells and prevent recurrence if the meningioma has been 
incompletely removed or in high-grade and/or recurrent 
tumors.

The radiographic appearance of a tumor can be 
described using quantitative and qualitative measures. 
Radiomics is an emerging field of quantitative imaging 
focused on leveraging large sets of imaging features to 
create an atlas [3, 4] that fosters the automatic, repro-
ducible, and unbiased assessment of active clinical cases 
[1, 5]. It provides an objective, quantitative approach to 
interpreting imaging data rather than subjective, qualita-
tive interpretations that rely on relatively limited human 
visual observations [6, 7]. In contrast, radiographic fea-
tures are tumor traits (e.g., signal intensity [SI], bony 
invasion, necrosis) assessed visually by radiologists.

Information generated via radiomics analyses provides 
radiological to histopathological tumor information that 
cannot be perceived visually [6]. This information also 
offers a technological basis for its applications in diagno-
sis, treatment, and prognosis [6]. To our knowledge, no 
study has evaluated the changes in meningiomas after 
radiation therapy based on radiomic or texture features 
analysis to date. This study investigated the changes in 
radiomic and radiologic features of meningiomas follow-
ing radiation therapy using routine magnetic resonance 
imaging (MRI).

Materials and methods
The CLEAR checklist was used for guiding the report-
ing of current study and is presented in a supplementary 
Table 1 [8].

Patient selection
This retrospective study was approved by the institutional 
review board of Hallym University Sacred Heart hospital 

(Approval No. 2021-10-016), and the need to obtain 
informed consent was waived. We included 197 patients 
admitted to our neurosurgery department for the preop-
erative examination of meningiomas between May 2010 
and May 2022. The patient flowchart in Fig.  1 shows 
selection of the study population. The inclusion criteria 
were: (1) radiologically satisfactory imaging findings for 
meningiomas, (2) patients without surgery, (3) patients 
who received radiation therapy (treatment group), and 
(4) available MRI images before and after treatment. We 
excluded 35 patients for the following reasons: (1) errors 
in importing segmentation (n = 12), (2) patient images 
with artifacts affecting evaluation (n = 10), (3) patients 
who had received chemotherapy or surgery before radia-
tion therapy (n = 10), (4) patients younger than 18 years 
(n = 1), and (5) other cases where the researcher deter-
mined that participation in this study was not appropri-
ate (n = 2). Eventually, 162 eligible patients were selected 
for analysis and divided into two cohorts: a training set 
(n = 118) and a validation set (n = 44) through random 
stratified sampling to ensure an even distribution. To 
perform this random stratified sampling for a uniform 
distribution, we segregated the data based on the year 
of the first brain MRI conducted at the hospital. Patients 
who underwent their MRI between May 2010 and May 
2018 were included in the training set, while those who 
had their MRI between June 2018 and May 2022 were 
assigned to the validation set. Clinical information, 
including age at diagnosis, gender, follow-up period, 
post-treatment period, total radiation dose, and tumor 
location, were retrieved from our institution’s electronic 
medical records. The patients’ medical record review was 
completed in May 2022.

Image acquisition
Images were acquired using 3.0-T MRI units (Ingenia 
Elition X or Achieva dStream, Philips Medical Systems; 
Skyra, Siemens Healthcare). A retrospective study was 
performed on the observation (n = 100) and radiation 
therapy (n = 62) patients with meningioma who under-
went baseline and follow-up MRI from T1-weighted 
imaging (T1WI), T2-weighted imaging (T2WI), con-
trast-enhanced (CE)-T1WI, fluid-attenuated inversion 
recovery (FLAIR) imaging, and CE-FLAIR imaging. 
Imaging protocols included noncontrast axial fluid-
attenuated inversion recovery (FLAIR) and nonenhanced 
axial T1-weighted spin-echo with flow compensation 
sequences. After weight-adjusted injection of a gadolin-
ium-based contrast agent at a dose of 0.1 mmol per kilo-
gram, contrast material–enhanced axial T1-weighted 
spin echo sequences with flow compensation or three-
dimensional T1-weighted gradient-echo sequences 
were performed. Sequence parameters varied among 
the different MRI units and reflect the heterogeneity of 



Page 3 of 14Jo et al. BMC Medical Imaging          (2023) 23:164 

image data in clinical practice. The detailed contents are 
listed in the Supplementary Tables 2, 3, 4. A total of 400 
radiomic and radiologic features were utilized to mea-
sure the imaging phenotype by employing random forest 
machine learning algorithms. A flowchart of the study is 
shown in Fig.  2. Area under the curve (AUC) and odds 
ratio (OR) were calculated after multiple-hypothesis cor-
rection. Gadolinium-enhanced T1-weighted MR images 
were acquired for all patients with a slice thickness of 
1 mm. The average tumor volume was 24.6 cm3 (ranging 
from 1.9 to 374 cm3), and mean margin dose at the 50% 
isodose line was 14 Gy (ranging from 4 to 28 Gy). Four 
patients exhibited peritumoral edema on MR images 
during radiation treatments. Neurological examinations 
and MR were performed every 6 months for 2 years 
after radiation therapy. If there was no progression, an 
MR image was obtained yearly. New MR images were 
obtained to assess disease status whenever symptoms 
that could be related to the tumor occurred. We mea-
sured the tumor size, contrast enhancement, SI, and lon-
gest diameter by drawing the region of interest (ROI) in 
PACS.

Measurement
When measuring the tumor in CE-T1WI, ROI was drawn 
manually in a multipoint measurement method along 
the tumor edge where the tumor is largest in the axial 
image. The size was measured in two dimensions, and the 
longest part was the diameter. The tumor SI on T1WI, 
T2WI, FLAIR, CE-FLAIR, and CE-T1WI was measured 
by placing an ROI. In MRI, a round ROI of about 40 
mm2 was placed around the most homogeneous part of 
the tumor, and, SI is measured. Another 40 mm2 round 
ROI was measured in the pons for the standardization of 
SI. The final tumor SI was set as the mean value of the 
measurements by two neuroradiologists blinded to the 
patients’ clinical information. Moreover, we observed the 
presence or absence of the following: cerebrospinal fluid 
(CSF) cleft, mass effect, intratumoral heterogeneity, skull 
hyperostosis, multifocality, bony invasion, midline shift, 
necrosis/hemorrhage, spiculation, cystic component, 
venous sinus invasion, recurrence.

Tumor segmentation for radiomic feature extraction
Radiomic features were extracted from the ROIs on 
T1WI, T2WI, FLAIR, CE-T1WI, and CE-FLAIR 
images using a software package (syngo.via Fron-
tier, Siemens Healthineers) based on the PyRadiomics 

Fig. 1  Flowchart shows selection of the study population
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library (Pyradiomics 1.2.0 (http://www.radiomics.io/
pyradiomics.html) [9]. ROIs of the visible gross tumor 
volume were semi-automatically delineated using the 
“lesion segmentation” function within the software [10]. 
This process resulted in a 3D ROI contour, with minor 
adjustments made to prevent beam-hardening artifacts 
and to account for adjacent soft tissues. A consensus 
ROI was created by combining both readers’ segmenta-
tions and disagreements were resolved through con-
sensus. Both radiologists were blinded to the patients’ 
clinical information during image analysis. Representa-
tive images of ROI segmentations are provided in Fig. 2.

Initially, the ROIs were resampled to have a uniform 
voxel size of 1  mm. Radiomic features were extracted 
using PyRadiomics a publicly accessible platform for 
radiomic features [9], embedded in syngo.via Frontier. 
This process generated six different categories of fea-
tures, automatically extracted, yielding a total of 872 fea-
tures per patient. The detailed information about these 
features is available publicly at (https://pyradiomics.
readthedocs.io/en/latest/).

A random forest–based wrapper algorithm was 
employed to select relevant radiomics features. The 
Random Forest assigns importance scores for each fea-
ture, requiring minimal parameter adjustment. Feature 
importance was assessed using the Boruta algorithm 
[11], which repetitively evaluated all possible feature 

combinations, ultimately identifying a subset or relevant 
features that contributed significantly.

AUC and OR were calculated while multiple-hypothe-
sis correction applied. The selection of features was car-
ried out using the classic maximum relevance minimum 
redundancy (MRMR) method with the R2 difference. 
MRMR makes sure that the features selected are not 
only the ones that provide minimum correlation between 
the input features but also have a high correlation with 
the output variable. Radiomic features were extracted to 
characterize tumors, encompassing the six filter types 
(original, square, logarithm, exponential, wavelet) and 
three feature types (first order, texture, shape) for each 
region. In order to comprehensively assess the tumor in 
multiple dimensions, wavelet transformation, similar 
to Fourier analysis, was performed on the tumor region 
in eight directions. This decomposition of the tumor 
region images yielded high-frequency (H) or low-fre-
quency components (L) components along three direc-
tions. Consequently, eight categories of wavelet features, 
namely HHH, HHL, HLH, LHH, LLL, LLH, LHL, and 
HLL, were obtained based on their specific decomposi-
tion orders.

Intensity features measured the distribution of gray 
level in the tumor region and were quantified as mean, 
energy, entropy, variance, skewness, kurtosis, and unifor-
mity. Radiomic features were extracted from the tumor 

Fig. 2  Workflow of the development and testing of a radiomics model. First, lesions were semiautomatically segmented on MRI scans for radiomic 
analysis. Second, a total of 1691 radiomics features were extracted. Third, in the training phase, the 10 most relevant features were selected with classic 
minimum redundancy maximum relevance. The random forest (RF) model was built and validated with the 10-fold cross-validation method. Fourth, in 
the test phase, the RF model was tested with a validation test set. AUC = area under the receiver operating characteristic curve
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regions in the observation group and radiation therapy 
MRIs [12, 13].The most significant features were selected 
from all extracted radiomic features, which were highly 
relevant to actual classes while reducing redundancy 
among them. After providing all modified parameters of 
pre-processing and radiomic feature extraction, all other 
parameters remained as a default configuration.

Machine learning and statistical analysis
Patient characteristics within the analysis cohort, includ-
ing a representative sample of matching variables, were 
summarized using percentages for categorical variables 
and means (standard deviation, SD) for continuous vari-
ables. Categorical variables were compared using appro-
priate statistical tests such as the chi-square test or Fisher 
exact test. Continuous variables were compared using the 
Mann–Whitney U test. The paired t-test and Wilcoxon 
test were utilized to compare the location of meningio-
mas, maximal diameter, and SI between the observation 
and radiation treatment groups. The Mann–Whitney U 
test or independent t-test was employed to compare dif-
ferences between imaging characteristics.

Machine learning methods were employed using a ran-
dom forest algorithm to construct a high-performance 
model. Univariate and multivariate analyses were con-
ducted using radiomic feature data to assess their cor-
relation with the ROI of meningiomas. The models were 
trained on the training sets, and hyperparameter tuning 
was performed using a 10-fold cross-validation within 
the training set. The performance of each fine-tuned 
model was evaluated using the validation set, including 
metrics such as accuracy, precision, recall, F1 score, and 
area under the receiver operating characteristic curve 
(AUROC). A cutoff value of 0.5, was chosen based on 
the median probability value. The AUROC with highest 
value was compared pairwise with other models using 
Delong’s method. All statistical analyses were conducted 
using SPSS version 24.0. (SPSS Inc., IBM Corp., Chicago, 
IL, USA). A significance level of P < 0.05 was considered 
statistically significant.

Results
Patients
Study was performed on controls (n = 100) and radiation 
therapy patients (n = 62) with meningiomas. The clinical 
characteristics of the study population are summarized 
in Table  1. The mean patient age was 69 years (range 
40–98 years) and 64 years (range 43–83) in the observa-
tion and radiation therapy group, respectively. The male/
female ratio was 27:73 and 15:47 in the observation and 
radiation therapy groups, respectively. The Chi-square 
test or Fisher exact test showed significant intergroup dif-
ferences in terms of age (P < 0.001) and no differences in 
terms of sex (P = 0.57).

The pre-post MRI interval was 2.9 ± 2.5 years 
(mean ± SD) and 3.0 ± 2.3 years in the observation and 
treatment groups, respectively. The treatment group 
post-MRI interval was 2.6 ± 2.2 years (mean ± SD). There 
were no significant intergroup differences regarding 
the follow-up (P = 0.87) and post-treatment periods 
(P = 0.38). In the observation group, meningiomas were 
found in the following locations: parasagittal or falx cere-
bri (n = 76), anterior cranial fossa (n = 6), cerebellopon-
tine angle (n = 3), cerebellar tentorium (n = 3), cavernous 
sinus (n = 2), posterior fossa (n = 2), olfactory bulb (n = 2), 
lateral ventricle (n = 2), and middle cranial fossa (n = 2), 
prepontine cistern (n = 1), foramen magnum (n = 1). In 
the treatment group, meningiomas were observed in the 
following locations: parasagittal or falx cerebri (n = 32), 
cerebellopontine angle (n = 9), posterior fossa (n = 6), cav-
ernous sinus (n = 3), olfactory bulb (n = 3), anterior cranial 
fossa (n = 2), lateral ventricle (n = 2), and cerebellar ten-
torium (n = 1), middle cranial fossa (n = 1), sella (n = 1), 
straight sinus (n = 1), optic sheath (n = 1). The latter three 
locations were not present in the observation group.

Distribution of positions was significantly different 
between both groups (P < 0.0001). Among the menin-
gioma characteristics, the CSF cleft was well seen in 88 
(88%) and 47 (75.2%) patients in the observation and 
treatment groups, respectively; the difference was statis-
tically significant (P < 0.001). Mass effect was also seen in 
23 (36.8%) and 25 (25%) patients in the observation and 
treatment groups, respectively; the difference was statis-
tically significant (P = 0.02). Bony invasion was observed 
in three (3%) and 12 (19.2%) patients in the observation 
and treatment groups, respectively; the difference was 
statistically significant (P < 0.0001). Necrosis or hemor-
rhage was observed in three (3%) and five (8%) patients 
in the observation and treatment groups, respectively; 
the difference was statistically significant (P = 0.04). 
Venous sinus invasion was observed in two (2%) and ten 
(16%) patients in the observation and treatment groups, 
respectively; the difference was statistically significant 
(P < 0.0001). Finally, recurrence was observed in one (1%) 
and four (6.4%) patients in the observation and treatment 
groups, respectively; the difference was statistically sig-
nificant (P = 0.01). Additionally, the pre-post intergroup 
difference in maximal area and diameter of meningio-
mas was statistically significant (P < 0.0001) (Table  2). 
However, the pre-post difference of the meningioma 
SI showed no statistical significance on T1WI, T2WI, 
FLAIR, CE-FLAIR, and CE-T1WI (Table 2).

Relevant radiomic features (univariate analysis)
The 162 patients identified for analysis were divided into 
two cohorts: training (n = 89) and validation sets (n = 73). 
The training set consisted of 25 males and 64 females 
(mean age, 67 years; age range, 40–98 years), and the 
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validation set comprised 17 males and 56 females (mean 
age, 65 years; age range, 43–83 years). Within each ROI 
in meningioma, the following were extracted from T1WI, 
T2WI, FLAIR, CE-FLAIR, and CE-T1WI: 19 first-order 
features, 16 shape-based (3D), 10 shape-shaped (2D), 

24  Gy-level co-occurrence matrix features, 16  Gy-level 
run-length matrix features, 16 Gy-level size-zone matrix 
features, five neighboring gray tone difference matrix, 
and 14 Gy-level dependence matrix features. Thus, there 
were 241 series and 1691 total radiomic features from the 

Table 1  Demographic Characteristics and Meningioma Information
Variable Observation group 

(n = 100)
Treatment group (n = 62) P Value

Patient age (y)* 69 ± 12 (40 ~ 98) 64 ± 10 (43 ~ 83) < 0.001

No. of men
No. of women

27 (27)
73 (73)

15 (24.2)
47 (75.8)

0.57

Follow up period (y)* 2.9 ± 2.5 3.0 ± 2.3 0.87

Post treatment period (y)* 2.6 ± 2.2 0.38

Total radiation dose† 0 1400 (400–2800)

Location (No.) (%) < 0.0001

Parasagittal or falx cerebri 76 (76) 32 (51.6)

Anterior cranial fossa 6 (6) 2 (3.2)

Cerebellopontine angle 3 (3) 9 (14.5)

Cerebellar tentorium 3 (3) 1 (1.6)

Cavernous sinus 2 (2) 3 (4.8)

Posterior fossa 2 (2) 6 (9.7)

Olfactory bulb 2 (2) 3 (4.8)

Lateral ventricle 2 (2) 2 (3.2)

Middle cranial fossa 2 (2) 1 (1.6)

Prepontine cistern 1 (1) 0 (0)

Foramen magnum 1 (1) 0 (0)

Sella 0 (0) 1 (1.6)

Straight sinus 0 (0) 1 (1.6)

Optic sheath 0 (0) 1 (1.6)

Imaging features (No.) (%) Description

CSF cleft Perimeter of CSF between the 
tumor and brain

88 (88) 47 (75.2) < 0.001

Mass effect Shift in normal brain paren-
chyma due to tumor

25 (25) 23 (36.8) 0.02

Intratumoral heterogeneity Heterogeneity in hyperintensity 
of MRI signal throughout tumor

22 (11) 7 (11.2) 0.87

Skull hyperostosis Bony overgrowth adjacent to 
tumor

14 (14) 14 (22.4) 0.07

Multifocality Non-contiguous growth of 
tumor

5 (5) 3 (4.8) 0.95

Bony invasion Appearance of tumor invading 
the skull

3 (3) 12 (19.2) < 0.0001

Midline shift Shift of the brain past midline 3 (3) 3 (4.8) 0.26

Necrosis/Hemorrhage Presence of necrosis or 
hemorrhage

3 (3) 5 (8.0) 0.04

Spiculation Irregularities in tumor shape and 
border

3 (3) 3 (4.8) 0.39

Cystic component Fluid filled cysts within the 
tumor

3 (3) 2 (3.2) 0.76

Sinus invasion Presence of venous sinus 
invasion

2 (2) 10 (16) < 0.0001

Recurrence Recurrent at presentation 1 (1) 4 (6.4) 0.01
Note: Unless otherwise specified, data are numbers of patients, with percentages in parentheses. Categoric variables were compared using the χ2 test or the Fisher 
exact test, as appropriate. Continuous variables were compared using the Mann-Whitney U test

* Data are expressed as means ± standard deviations; data in parentheses are ranges

† Data are expressed as medians, with ranges in parentheses
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original images (Fig.  3). Table  3 demonstrates the most 
relevant radiomic features for discriminating between 
the two groups on T1WI, CE-FLAIR, CE-T1WI, and all 
images (P < 0.05). The most relevant radiomic feature on 
T1WI was selected as squareroot_firstorder_Kurtosis. 

We selected the three most relevant radiomic features on 
CE-FLAIR: one exponential and texture and two square-
based features. The 10 most relevant radiomic features 
on CE-T1WI were selected: two original, four logarithm, 
and four wavelet-based features. The 10 most relevant 

Table 2  Comparison of area, maximal diameter, MR signal intensity ratio of meningioma between observation and treatment groups
Pre Post P Difference P

Area (mm2) Observation group (n = 100) 89.55 (50.70-152.91) 111.02(60.75-218.45) < 0.0001 16.85 (6.71–42.44) < 0.0001

Treatment group (n = 62) 195.07 (124.37-305.69) 195.01 (111.62- 322.04) 0.12 -10.25
(-27.85-16.64)

Maximal diameter (mm) Observation group (n = 100) 10.75 (7.18–14.09) 11.72 (8.23–16.17) < 0.0001 0.91 (0.32–2.36) < 0.0001

Treatment group (n = 62) 15.06 (12.18–18.01) 14.65 (11.90- 18.76) 0.12 -0.41 (-1.46 to 0.49)

T1 signal ratio Observation group (n = 100) 0.74 (0.59–0.84) 0.67 (0.54–0.82) 0.09 -0.009 (-0.11- 0.05) 0.38

Treatment group (n = 62) 0.78 (0.62–0.88) 0.71 (0.58–0.84) 0.02 -0.04 (-0.14 to 0.05)

T2 signal ratio Observation group (n = 100) 1.29 (1.08 to 1.52) 1.28 (1.01 to 1.45) < 0.05 -0.07 (-0.18 to 0.05) 0.95

Treatment group (n = 62) 1.14 (1.21 to 1.56) 1.34 (1.09 to 1.59) 0.04 -0.06 (-0.23 to 0.07)

CE-T1 signal ratio Observation group (n = 100) 1.70 (1.42–2.07) 1.67 (1.48–1.99) 0.51 0.009 (-0.23- 0.31) 0.07

Treatment group (n = 62) 1.88 (1.62–2.16) 1.75 (1.55–2.21) 0.09 -0.09 (-0.34 to 0.16)

FLAIR signal ratio Observation group (n = 100) 1.15 ± 0.36 1.08 ± 0.34 0.0061 -0.05 (-0.16-0.07) 0.66

Treatment group (n = 62) 1.27 ± 0.27 1.19 ± 0.31 0.01 -0.06 (-0.19 to 0.07)

CE-FLAIR signal ratio Observation group (n = 100) 1.34 ± 0.46 1.28 ± 0.43 0.13 -0.04 (-0.22 to 0.11) 0.85

Treatment group (n = 62) 1.51 ± 0.45 1.44 ± 0.41 0.28 -0.03 (-0.21 to 0.18)
Note: Data are expressed as medians, and data in parentheses are the interquartile range

Fig. 3  Association test-Clustermap (241 series and 1691 features). Filter Types: Original, Square, Squareroot, Logarithm, Exponential, Wavelet, Feature 
Types: Firstorder, Texture, Shape
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radiomic features for the differentiation between both 
groups on all images were selected: one original, two 
square, and seven wavelet-based features.

Figure  4 shows box plots of each of the most distin-
guishable radiomic features from T1WI, CE-FLAIR, 
CE-T1WI, and all images, successfully differentiating the 
observation group from the radiation treatment group. 
The heat map of 10 radiomic features in all images was 
selected from the variable-hunting algorithm for the ran-
dom forest model to show the performance of radiomic 
features extracted from MRI in meningioma after radia-
tion therapy. Each row and column correspond to one 
normalized radiomic feature and one patient group, 
respectively (Fig. 5).

Multivariate results for radiomic features
Table  4; Fig.  6 demonstrate the best combination set of 
radiomic features for differentiation between both groups 
on T1WI, CE-FLAIR, CE-T1WI, and all image com-
binations. One radiomic feature on T1WI was squar-
eroot_firstorder_ kurtosis (OR = 4.45, P < 0.0001), which 
was significant in their association of meningioma with 
radiation therapy, with an AUROC of 0.79. The best 
subset of radiomic features in the training set for dif-
ferentiating between both groups on CE-FLAIR was 
exponential_gldm_SmallDependenceLowGrayLevelEm-
phasis (OR = 4.44, P < 0.0001) had an AUROC of 0.73. 
The best combination of radiomic features on CE-T1WI 
was this subset composed of three radiomic features: 
logarithm_glcm_Idn (OR = 3.385, P < 0.05), wavelet-LLL_
firstorder_Kurtosis (OR = 2.049, P < 0.05), original_glszm_
GrayLevelNon UniformityNormalized (OR = 1.851, 
P < 0.05) with an AUROC of 0.80. Five radiomic fea-
tures on all images were randomly significant in their 
association with meningioma with radiation therapy 
(P < 0.05). These features included original_shape_Spheri-
cal Disproportion (OR = 2.354, P < 0.05), wavelet-LLL_
glcm_Idmn (OR = 2.487, P < 0.05), square_glcm_Idmn 
(OR = 2.097, P < 0.05), square_firstorder_10Percentile 
(OR = 1.568, P < 0.05), and wavelet-HLL_glcm_Corre-
lation (OR = 1.825, P < 0.05). The best combination of 
radiomic features was this subset composed of eight 
radiomic features with an AUROC of 0.87 of the RF mod-
els from 10-fold cross-validation to differentiate between 
the observation and radiation therapy (Table 4; Fig. 6).

Validation result
Classification results based on the training group from 
repeating 10-fold cross-validation are presented in 
Table  5, including parameters of sensitivity, specific-
ity, precision, F1 score, accuracy, Matthews’s correlation 
coefficient (MCC), and AUC for the four types of images 
(T1WI, CE-T1WI, CE-FLAIR, and image combination). 
Their images achieved higher accuracies of 0.71–0.73 and 
AUC of 0.70–0.76. In the validation set, relatively high 
accuracy and AUC were shown in the model application 
for the difference in assessing meningioma after radio-
therapy. All image combinations showed a sensitivity of 
78.7%, an accuracy of 0.73, and an AUC of 0.79. The CE-
T1WI group showed an accuracy of 0.71 and an AUC of 
0.74. There was good agreement between the two inde-
pendent neuroradiologists in assessing the meningiomas 
(k = 0.81 [95% CI: 0.78, 0.84]).

Discussion
Radiation therapy has developed in recent years, and 
many new techniques have emerged [14].Techniques 
capable of increasingly accurate tumor localization have 
been developed to minimize the exposure of the normal 

Table 3  Radiomic features extracted from brain MRI that were 
significantly relevant with meningioma of radiation treatment 
from univariate analysis
Filter 
& Fea-
ture 
types

Radiomic Features

Origi-
nal & 
Shape

original_shape_Compactness2
original_shape_SphericalDisproportion

Square 
& 
Texture

square_gldm_SmallDependenceLowGrayLevelEmphasis
square_glszm_ZoneEntropy
square_glcm_ Idmn

Loga-
rithm & 
Texture

logarithm_glcm_Idn
logarithm_glszm_SmallAreaEmphasis
logarithm_ngtdm_Strength

Expo-
nential 
& 
Texture

exponential_gldm_SmallDependenceLowGrayLevelEmphasis

Origi-
nal & 
Texture

original_glszm_GrayLevelNonUniformityNormalized

First 
order

squareroot_firstorder_Kurtosis
square_firstorder_10Percentile
logarithm_firstorder_Skewness 
wavelet-LLL_firstorder_Kurtosis

Wave-
let& 
Texture

wavelet-LLL_glcm_Idmn wavelet-LHL_glcm_Idmn 
wavelet-HLH_glcm_MCC
wavelet-LLL_glcm_Idmn 
wavelet-LHL_gldm_DependenceEntropy 
wavelet-HLL_glcm_Correlation 
wavelet-HLH_gldm_LargeDependenceEmphasis 
wavelet-LHL_glrlm_LongRunHighGrayLevelEmphasis 
wavelet-HHL_glrlm_RunEntropy 
wavelet-HHH_glszm_SizeZoneNonUniformityNormalized

gldm, gray-level dependence matrix; glszm, gray level size zone matrix; glcm, 
gray-level co-occurrence matrix; Idmn, inverse difference moment normalized; 
Idn, inverse difference normalized; ngtdm, neighboring gray tone difference 
matrix; MCC, maximal correlation coefficient; glrlm, gray level run length matrix

Filter types: Original, Square, Squareroot, Logarithm, Exponential, Wavelet

Feature types: Firstorder, Texture, Shape
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brain to high radiation [15]. Radiation therapy is widely 
used for treating meningiomas that are difficult to access 
surgically, such as those in the skull base and optic path-
way [16]. There are reports that radiation therapy for 
local control after subtotal excision can improve the 
5-year progression-free survival by up to 95% [16]. Radia-
tion therapy after subtotal excision is effective enough. 
A study tracked 84 meningiomas treated with stereotac-
tic radiosurgery; the tumor volume was reduced by 33% 
after 24 months and 36% after 36 months [17, 18]. In our 
study, as a result of follow-up for approximately 3 years, 
the size and maximal diameter increased significantly 
in the observation group. However, growth was not evi-
dent or slightly decreased in the radiation treatment 
group. There was a significant difference in meningioma 
size between both groups. Conversely, there was no sig-
nificant difference in the SI and contrast enhancement 
of meningioma between both groups after radiotherapy. 
This result is considered meaningful.

Both groups differed significantly regarding age and 
meningioma location. Patients in the radiation therapy 
group were younger, and meningiomas in the observa-
tion group were mostly located in the parasagittal or falx 
cerebri. Our study showed that radiation therapy was 
used more frequently in treating meningiomas that are 
difficult to access surgically. Examples are those located 
in the cerebellopontine angle, cerebellar tentorium, 
cavernous sinus, posterior fossa, olfactory bulb, sella, 
straight sinus, and optic sheath. Significantly more find-
ings, such as CSF cleft, mass effect, bony invasion, necro-
sis/hemorrhage, venous sinus invasion, and recurrence, 
were observed in the radiation treatment group than in 
the observation group.

In this study, 2 patients in the radiation treatment 
group increased rapidly in tumor size even after radio-
therapy. After surgery, the meningioma was confirmed as 
atypical. The possibility of atypical or malignant menin-
gioma cannot be completely ruled out if there is a rapid 
increase in size after radiation therapy [19]. To date, no 

Fig. 4  Box plots of the amplitude features, successfully differentiating observation group from radiation treatment group. (A) squareroot_firstorder_Kur-
tosis (P = 0.005), (B) exponential_gldm_Small Dependence Low Gray Level Emphasis (P = 0.048), (C) logarithm_glcm_Idn (P < 0.0001), (D) original_shape_
Spherical Disproportion (P = 0.012)
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paper has studied the discrimination of radiomic features 
after radiation treatment of meningioma based on MRI. 
This study is the first to propose a radiology model based 
on brain MRI.

In our study, we could not extract meaningful radiomic 
features from T2WI and FLAIR, but we extracted 
radiomics of T1WI, CE-FLAIR, CE-T1WI, and five image 
combinations. A total of 24 radiomic features showed a 
high correlation with radiation treatment, and the combi-
nation of images showed good predictive power in train-
ing (AUC: 0.76) and validation (AUC: 0.79). The single 
images T1WI, CE-FLAIR, and CE-T1WI showed rela-
tively high predictive power comparable to the combina-
tion of images.

We investigated the correlation between radiomic fea-
tures and radiation therapy. Among 1595 radiomic fea-
tures, 14 showed a high correlation in T1WI, CE-FLAIR, 
and CE-T1WI. Many of these features were textural 
features of the image, features measuring gray-level val-
ues, and radiomic features measuring heterogeneity in 
the texture patterns, local homogeneity, or heterogene-
ity of the image. These features showed the microscopic 
descriptions of the meningioma. These features were 
not easily discernible to the human eye or understood or 
interpretable in any meaning [20–24]. Here, the radiomic 
feature called CE-FLAIR_Small Dependence Low Gray 
Level Emphasis was a meaningful element commonly 

derived from univariate and multivariate analysis results. 
Radiomic features emphasizing gray level were signifi-
cantly associated with brain invasion of meningiomas 
[20]. CE-T1WI original_shape_Compactness2, orginal_
shape_Spherical Disproportion, and logarithm-glasm 
small area emphasis seemed to show changes in tumor 
size and shape. The values of these features were lower 
in the radiation treatment group than in the observation 
group, suggesting that changes in meningioma size and 
shape are related to radiation therapy. A study that inves-
tigated the association between radiomic and semantic 
features of meningioma reported that spherical dispro-
portion was related to mass effect, speculation, and bony 
and venous sinus invasion [1].

Kurtosis, a radiomic feature commonly seen in T1WI 
and CE-T1WI, is a measure of the peakedness of the dis-
tribution of values in meningioma ROI, meaning that 
higher values do not converge to the mean but spread 
toward the tail of a normal distribution [25]. Radiomic 
features reflect the microscopic heterogeneity within 
tumors associated with radiation therapy. They are a new 
tool for predicting meningioma changes after radiation 
therapy. It is relatively easy to compare the change in 
SI of the image by measuring the ROI. However, it was 
a very interesting task as it provided information on the 
changes in the radiomic features of meningioma after 
radiation treatment.

Fig. 5  Most relevant features in training set. Feature extraction from MRI and selected 10 most relevant features. One original, two square, and seven 
wavelet-based features. The heatmap of these radiomic features showed differences between observation and radiation therapy groups
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Our results suggest that the radiomic features of 
meningiomas can be used to predict changes and after 
radiotherapy. This study attempted to extract radiomic 
features from each image by selecting T1WI, T2WI, 
FLAIR, CE-FLAIR, and CE-T1WI. CE-T1WI is com-
monly used to define macroscopic tumor boundaries and 
evaluate the extent of tumor invasion and blood supply 
[26]. T2 imaging is sensitive to watery tissues and can be 
used to detect the presence of edema [27]. Other stud-
ies have introduced features related to meningioma and 
brain invasion in T2WI [20].

However, this study showed no significant difference 
between the observation and treatment groups in the SI 

ratio in T2WI and FLAIR. Radiomic features also had no 
meaningful extracted information. This seems to require 
more in-depth research with more patients. In this study, 
the multiple sequence models (T1WI, T2WI, FLAIR, CE-
T1WI, and CE-FLAIR combined) showed better predic-
tive power than the single models. These results suggest 
that multiple sequences may provide more informa-
tion about the tumor and better show radiation-related 
changes in meningiomas.

Our study had several limitations. First, as this was a 
retrospective study, histological confirmation was not 
performed in all patients. Meningioma removal surgery 
was performed on a limited basis only in some cases 

Table 4  Logistic regression analysis for best radiomic feature set showing statistical difference between observation and radiation 
treatment groups in meningioma patients

Univariate Multivariate
Image Radiomic features MI R2 P AUC OR (95% 

CI)
P AUC

T1WI squareroot_firstorder_Kurtosis 0.171 0.25 0.005 0.791 4.45 
(2.10–9.45)

< 0.0001 0.79

CE-FLALR exponential_gldm_SmallDependenceLowGrayLevelEmphasis 0.146 0.151 0.048 0.733 4.44 
(1.97–
10.01 )

< 0.0001 0.73

square_gldm_SmallDependenceLowGrayLevelEmphasis 0.158 0.142 0.048 0.765

square_glszm_ZoneEntropy 0.1 0.14 0.048 0.71

CE-T1WI logarithm_glcm_Idn 0.152 0.264 < 0.0001 0.805 3.39 
(1.51–7.57)

0.003 0.80

wavelet-LLL_firstorder_Kurtosis 0.169 0.25 < 0.0001 0.824 2.05 
(1.06–3.98)

0.034

original_glszm_GrayLevelNonUniformityNormalized 0.082 0.086 0.007 0.639 1.85 
(1.10–3.12)

0.021

logarithm_firstorder_Skewness 0.178 0.0238 < 0.0001 0.786

wavelet-LLL_glcm_Idmn 0.123 0.182 < 0.0001 0.744

wavelet-LHL_glcm_Idmn 0.1 0.151 0.0003 0.698

original_shape_Compactness2 0.086 0.142 0.0005 0.719

logarithm_ngtdm_Strength 0.1 0.125 0.001 0.744

logarithm_glszm_SmallAreaEmphasis 0.08 0.073 0.017 0.67

wavelet-HLH_glcm_MCC 0.041 0.066 0.026 0.627

T1WI + T2WI + FLAIR + CE-
T1WI + CE-FLAIR

original_shape_SphericalDisproportion 0.067 0.071 0.012 0.669 2.35 
(1.21–4.58)

0.012 0.87

wavelet-LLL_glcm_Idmn 0.062 0.066 0.012 0.662 2.49 
(1.24-5.00)

0.010

square_glcm_Idmn 0.046 0.051 0.032 0.651 2.10 
(1.21–3.64)

0.008

wavelet-HLL_glcm_Correlation 0.044 0.055 0.028 0.659 1.83 
(1.12–2.98)

0.016

square_firstorder_10Percentile 0.043 0.057 0.012 0.601 1.59 
(1.04–2.43)

0.033

wavelet-HHH_glszm_SizeZoneNonUniformityNormalized 0.036 0.047 0.040 0.638 1.46 
(0.99–2.16)

0.060

wavelet-HLH_gldm_LargeDependenceEmphasis 0.049 0.052 0.032 0.642 1.42(0.93–
2.18)

0.104

wavelet-LHL_gldm_DependenceEntropy 0.062 0.056 0.026 0.634 1.59 
(0.90–2.82)

0.109

wavelet-LHL_glrlm_LongRunHighGrayLevelEmphasis 0.05 0.049 0.037 0.606

wavelet-HHL_glrlm_RunEntropy 0.058 0.048 0.040 0.613
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with enlarged tumors. Although evaluated using imag-
ing, image evaluation may be subjective. Second, this 
study was conducted at a single institution with a lim-
ited sample size. Further studies with larger sample 
sizes from multiple centers are required for external 
validation. External validation is needed to evaluate the 

reproducibility and optimize the model. Third, there may 
be an unavoidable selection bias, as approximately 18% of 
the patients were excluded from the training and valida-
tion cohorts for various reasons. Fourth, MRI scans were 
retrospectively collected on three MRI machines with dif-
ferent devices and acquisition parameters, and radiomic 

Table 5  Difference in performance of models of meningioma for observation and treatment groups between training and validation 
sets
Training/Validation set Images Sensitivity (%) Specificity (%) Precision F1 Score MCC Accuracy AUC
Training set T1WI 51.9 81.5 0.54 0.53 0.34 0.73 0.705

CE-FLAIR 50 77.3 0.42 0.45 0.26 0.71 0.702

CE-T1WI 66.7 70.3 0.46 0.54 0.34 0.71 0.749

T1WI + T2WI + FLAIR + CE-T1WI + CE-FLAIR 66 75.9 0.71 0.74 0.52 0.71 0.758

Validation set T1WI 53.3 83.5 0.61 0.57 0.30 0.75 0.713

CE-FLAIR 58.1 76.9 0.69 0.71 0.33 0.71 0.721

CE-T1WI 63.6 73.7 0.48 0.54 0.37 0.71 0.739

T1WI + T2WI + FLAIR + CE-T1WI + CE-FLAIR 78.7 67.4 0.71 0.75 0.46 0.73 0.787
MCC: Matthews Correlation Coefficient

Fig. 6  Receiver operating characteristic (ROC) curves based on the significant radiomic features
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features are sensitive to parameters. Therefore, it is nec-
essary to normalize the MR images to obtain a standard 
normal distribution of image intensities. Finally, in the 
T1WI, T2WI, and FLAIR sequences, the meningioma 
and surrounding borders were unclear in some cases. We 
referenced the CE-T1WI sequence for visual guidance; 
however, deviations remained. In the future, multimodal 
studies, such as DWI and ADC map sequences, can be 
integrated into the model to further improve accuracy.

In conclusion, this study evaluated radiomic features 
and radiologic appearances of meningiomas, which were 
significantly different after radiotherapy. Our findings 
can help predict size reduction after radiotherapy for 
meningioma. A radiomic model using MR images can be 
useful as a biomarker to predict changes in meningiomas 
after radiation treatment. This is expected to have a posi-
tive effect on patient treatment.
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