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Abstract
Background  To investigate whether CT-based radiomics can effectively differentiate between heterotopic pancreas 
(HP) and gastrointestinal stromal tumor (GIST), and whether different resampling methods can affect the model’s 
performance.

Methods  Multi-phase CT radiological data were retrospectively collected from 94 patients. Of these, 40 with HP 
and 54 with GISTs were enrolled between April 2017 and November 2021. One experienced radiologist manually 
delineated the volume of interest and then resampled the voxel size of the images to 0.5 × 0.5 × 0.5 mm3, 1 × 1 × 1 
mm3, and 2 × 2 × 2 mm3, respectively. Radiomics features were extracted using PyRadiomics, resulting in 1218 features 
from each phase image. The datasets were randomly divided into training set (n = 66) and validation set (n = 28) at a 
7:3 ratio. After applying multiple feature selection methods, the optimal features were screened. Radial basis kernel 
function-based support vector machine (RBF-SVM) was used as the classifier, and model performance was evaluated 
using the area under the receiver operating curve (AUC) analysis, as well as accuracy, sensitivity, and specificity.

Results  The combined phase model performed better than the other phase models, and the resampling method of 
0.5 × 0.5 × 0.5 mm3 achieved the highest performance with an AUC of 0.953 (0.881-1), accuracy of 0.929, sensitivity of 
0.938, and specificity of 0.917 in the validation set. The Delong test showed no significant difference in AUCs among 
the three resampling methods, with p > 0.05.

Conclusions  Radiomics can effectively differentiate between HP and GISTs on CT images, and the diagnostic 
performance of radiomics is minimally affected by different resampling methods.
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Introduction
Heterotopic pancreas (HP) is a congenital anomaly in 
which pancreatic tissue is separate from the main gland 
and lacks a continuous vascular or ductal connection [1]. 
HP is most commonly found in the upper gastrointestinal 
tract, such as the stomach, duodenum, and proximal jeju-
num, but is rare in other locations such as the esophagus, 
ileum, and biliary tree. The majority of affected patients 
are asymptomatic, making HP difficult to diagnose in 
clinical settings. The lesion is typically discovered inci-
dentally during an unrelated surgery, imaging examina-
tion, or at autopsy. Autopsy studies [2–3] have reported 
an incidence of 0.5-13.7%, while the incidence during 
upper abdominal surgeries and gastrectomies is 0.2% and 
0.9%, respectively.

HP often presents as a submucosal mass of the gastro-
intestinal tract and can be misdiagnosed as other sub-
mucosal tumors, particularly gastrointestinal stromal 
tumors (GISTs), in medical imaging or endoscopy. GISTs 
are specific mesenchymal tumors that can develop in dif-
ferent locations throughout the gastrointestinal tract, 
omentum, and mesentery [4–5]. GISTs are invasive and 
potentially malignant, with a 20-30% risk of malignancy 
and poor prognosis when they give rise to abdominal 
cavities or liver metastases [6–7]. Resection is the only 
curative treatment for GISTs. In contrast, HP generally 
does not require treatment unless complications occur.

Computed tomography (CT) is the ideal imaging 
modality for upper gastrointestinal examination and 
preoperative evaluation, but the similar appearance of 
HP and GISTs in CT scans poses a diagnostic challenge. 
The characteristic radiographic appearance of HP is a 
small broad-based submucosal mass in the antrum with 
ill-defined or microlobulated margins, resembling leio-
myoma or other submucosal tumors such as GISTs [8–
10]. HP generally shows obvious enhancement in the late 
arterial phase and a gradual decrease in the venous and 
delayed phases on enhanced CT. Lesions in small GISTs 
exhibits uniform enhancement on enhanced CT. The 
venous phase enhancement is slightly higher than that in 
the arterial phase, but detecting changes in GISTs is chal-
lenging with the naked eye. As a result, partial patients 
with HP have received unnecessary operative resection 
by being misdiagnosed as having GISTs.

Radiomics, first proposed by Lambin et al. [11], allows 
for in-depth tumor phenotyping and quantification of 
lesion heterogeneity, providing high-throughput quan-
titative data from radiological images that are invis-
ible to the human eye. Several studies have explored 
the potential value of radiomics in abdominal oncol-
ogy, with promising results for lesion characterization, 
assessment of therapeutic response, and patient survival 
[12–14]. The multi-phase enhanced CT images show 
similarities between HP and GISTs, making it difficult for 

radiologists to visually differentiate. Nevertheless, poten-
tial subtle differences in shape, intensity, and texture 
might be emerging, hinting at the suitability of radiomics 
approach.

Therefore, this study aims to develop and validate a CT-
based radiomics model that can discriminate between 
HP and GISTs, and to investigate the effect of different 
resampling parameters on the model’s performance.

Materials and methods
Patients
A total of 94 patients who underwent abdominal CT 
examinations were included in this study. Among them, 
40 with HP and 54 with GISTs were enrolled from April 
2017 to October 2021 at single center. The inclusion 
criteria is as follow: (1) all patients were proved HP or 
GISTs by pathology after resection. (2) diameters of 
GISTs lesions were less than 3 cm. (3) all patients under-
went abdominal multi-phase CT scan, including: CT 
plain, arterial, venous and delayed phases. The exclusion 
criteria is as follow: (1) patients with incomplete clinic-
pathological data. (2) poor quality CT scan, including: 
blurred lesion boundaries and severe artifacts. (3) lack 
one of the multi-phase CT scan. The retrospective study 
was approved by our institutional review board, and the 
need to obtain informed consent was waived. The whole 
analysis workflow in this study is shown in Fig. 1.

CT protocol
The CT examinations were performed using Siemens 
Force dual-source 128-row CT scanner and Siemens 
Definition Flash dual-source 128-row CT scanner with 
the following parameters: 100mAs tube current, 120 kV 
tube voltage, 512 × 512 matrix, 1.5 pitch, 1.5  mm layer 
thickness, and 1  mm layer spacing. Intravenous group 
injection tracking method was used for contrast agent 
enhancement, with iodophoresis injection (Shanghai 
Stellite) selected as the contrast agent, which had an 
iodine concentration of 350 mg/mL, dose of 80mL, and 
flow rate of 23mL/s. The scan was delayed for 30, 60, 90, 
120s for the arterial phase, venous phase, and delayed 
phase after the injection was completed.

CT radiomics analysis
One radiologist, Rz.J, with 13 years of experience in 
abdominal CT manually delineated the volume of inter-
est (VOI) using TIK-SNAP software (version 3.8.0). The 
VOI covered the entire lesion and excluded the equivocal 
boundary of the mass. All segmentations were confirmed 
by another radiologist, Hy.W, with 25 years of experience 
in abdominal CT. Appropriate adjustments were made 
after a consensus-based discussion when disagreements 
arose.
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Radiomics was implemented using PyRadiomics, an 
open-source Python tool package (3.0.1). Prior to this, the 
voxel size of the images was resampled to 0.5 × 0.5 × 0.5 
mm3, 1 × 1 × 1 mm3, and 2 × 2 × 2 mm3, respectively. Gray-
level was discretized using a fixed bin width value of 70 
with absolute discretization from − 1000 to 3000 Houn-
sfield units. Radiomics feature extraction was performed 
separately for the four-phase images (plain, arterial, 
venous, and delayed phases). Features were extracted 
from the original image and filtered images, which 
included Laplacian of Gaussian (LoG) and wavelet filter-
ing. Eventually, 1218 features, including geometry-based, 
grayscale-based, and texture-based were acquired from 
each phase image.

Radiomics feature selection and classifier building
The patients were randomly divided into a training set 
(n = 66) and a validation set (n = 28) at a 7:3 ratio. Prior 
to feature selection, z-score normalization was applied 
to the training set. Firstly, predictors with zero vari-
ance were removed. Secondly, high-correlational vari-
ables with rs > 0.8 were eliminated using the Spearman 
test. Thirdly, recursive feature elimination (RFE) with 
a treebagging algorithm was used to analyze the vari-
ables, and those with an ‘accuracy’ index were retained 
via five-fold cross-validation. Lastly, the optimal predic-
tors with non-multicollinearity and anti-overfitting were 
selected using the least absolute shrinkage and selection 
operator (LASSO) regression model. These features were 
preserved via the one standard error of the minimum 
lambda (λ) of five-fold cross-validation.

Support vector machine (SVM) has several advantages 
such as good performance on small-scale datasets, rapid 
computational speed, multiple optional kernels, well 
generalization, and achieving an optimal global solution 
with convex optimization problems [15]. In this study, 
the radial basis kernel function-based SVM (RBF-SVM) 
was chosen as the main model for analysis. Each phase 
RBF-SVM model of different resampling methods was 
constructed to evaluate the diagnostic performance. 
Combined phase model was constructed by optimal fea-
tures of each phase via final LASSO selection method.

Statistical analysis
The difference in categorical variables was calculated 
using the Chi-Square method, while the difference 
in continuous variables was calculated using t-test or 
Mann-Whitney U test and described as mean ± standard 
deviation or median (IQR). The diagnostic performance 
of radiomics features was evaluated using the area under 
the receiver operating curve (AUC) analysis, as well as 
accuracy, sensitivity, and specificity. The AUC values 
among different phase models were compared using the 
DeLong method, and a p-value of less than 0.05 was con-
sidered statistically significant.

Results
Baseline characteristic
Out of the 94 patients included in the study, 40 had HP 
and 54 had GIST. The average age of the HP patients 
was 47.8 ± 14.0 years (ranging from 20 to 71 years), with 
23 males and 17 females. The average age of the GIST 

Fig. 1  Flowchart of the analysis in this study
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patients was 58.7 ± 8.3 years (ranging from 41 to 77 
years), with 22 males and 32 females. The HP patients in 
this study tended to be younger than those with GIST. 
Further details regarding the baseline information can be 
found in Table 1.

Discrimination performance and feature contribution
All classifiers using different resampling methods showed 
favorable performance, with the combined phase model 
performing better than the other phase models. In the 
resampling of 0.5 × 0.5 × 0.5 mm3 radiomics, the com-
bined phase model achieved an AUC of 0.997 (0.991-
1), accuracy of 0.985, sensitivity of 1, and specificity 
of 0.964 in the training set (Fig.  2). It also achieved an 
AUC of 0.953 (0.881-1), accuracy of 0.929, sensitivity of 
0.938, and specificity of 0.917 in the validation set. The 
combined phase RBF-SVM comprised of 4 original and 
4 wavelet filter features. Out of these, 2 were shape sta-
tistics, 2 were first-order statistics, and 4 were textural 
statistics.

In resampling of 1 × 1 × 1 mm3 radiomics, the com-
bined phase model was the best performer with an AUC 
of 0.996 (0.989-1), accuracy of 0.970, sensitivity of 0.947, 
and specificity of 1 in the training set. In the validation 
set, it achieved an AUC of 0.880 (0.748-1), accuracy of 
0.857, sensitivity of 0.938, and specificity of 0.750. This 
model included 4 original, 1 LoG, and 5 wavelet filter 
features. Out of these, 2 were shape statistics, 1 was first-
order statistics, and 7 were textural statistics.

In the resampling of 2 × 2 × 2 mm3 radiomics, the 
venous phase model was the best performer with an 
AUC of 0.943 (0.889–0.996), accuracy of 0.894, sensitiv-
ity of 0.947, and specificity of 0.821 in the training set. It 
achieved an AUC of 0.901 (0.754-1), accuracy of 0.893, 

Table 1  The baseline characteristics of patients
Baseline characteristics Heterotopic 

pancreas (HP)
gastrointes-
tinal stro-
mal tumor 
(GIST)

Number of participants 40 54
Age (years) 47 ± 14 59 ± 8
Gender
  Man 23 (57.5%) 22 (40.7)
  Woman 17 (42.5%) 32 (59.3)
Resection type
  Gastrectomy under
  laparoscopic surgery

9 (22.5%) 6 (11.1%)

  Conventional gastrectomy 3 (7.5%) 4 (7.4%)
  Gastrointestinal endoscopic
  surgery

28 (70%) 44 (81.5%)

Size (cm)
  Length diameter 0.9 − 0.35 0.7 − 0.3
  Short diameter 0.5–2.7 0.6–2.4
Location
  Proximal stomach 2 (5%) 30 (55.6%)
  Middle stomach 21 (52.5%) 19 (35.2%)
  Distal stomach 17 (42.5%) 5 (9.2%)

Fig. 2  Different resampling method auc performance in plain phase (A), arterial phase (B), venous phase (C), delayed phase (D) and combined phase 
(E) on the training set
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sensitivity of 0.875, and specificity of 0.917 in the valida-
tion set (Fig. 3). The venous phase RBF-SVM contained 
2 original, 1 LoG, and 4 wavelet filter features. Out of 
these, 1 was shape statistics, 2 were first-order statistics, 
and 4 were textural statistics. The performance of each 
phase model is shown in Table 2.

Based on these results, the globally optimal model was 
the combined phase model originating from the resam-
pling of 0.5 × 0.5 × 0.5 mm3 radiomics, and the optimal 
hyperparameters are “C” of 0.4 and “gamma” of 1.

AUCs comparison among different resampling methods
Although the models showed similar diagnostic efficacy 
on different resampling methods, we used the DeLong 
method to assess whether there were any differences 
among the AUCs of the models on the validation set. 
The results showed no significant difference in AUCs, 
with p-values of 0.177, 0.275 and 0.951 in the combined 
phase, and 0.295, 1, and 0.276 in the plain phase, respec-
tively. The comparison of the other phases is shown in 
Table  3. Figure  4 depicts the calibration curve for the 
best model in different resampling methods and heatmap 
of the AUCs performance of the different resampling 
methods and phases. The names of the selected features 
in each phase model are provided in the supplementary 
materials.

Overlap radiomics features
There were overlapping radiomics features across differ-
ent resampling methods on the plain, arterial, and venous 
phases. In the plain phase, the overlapping feature was 
the first-order statistic ‘Median’. In the arterial phase, the 
overlapping feature was the shape statistic ‘Sphericity’. In 
the venous phase, the overlapping features were the first-
order statistic ‘Mean’ and the shape statistic ‘Sphericity’. 
All these features were derived from the original filter.

Discussion
There are few studies that focus on radiomics to differ-
entiate between HP and GISTs on CT scans. Our study 
shows that a CT-based radiomics model can be used to 
distinguish between HP and GISTs, and that different 
resampling methods do not affect the diagnostic perfor-
mance of the models. There was no significant difference 
in the performance of each phase model (p > 0.05). In the 
resampling of 0.5 × 0.5 × 0.5 mm3, the best model is from 
combined phase, achieved the best performance with 
AUC of 0.953. In the resampling of 1 × 1 × 1 mm3, the best 
model (combined phase) achieved the best performance 
with AUC of 0.880. In the resampling of 2 × 2 × 2 mm3, 
the best model (venous phase) achieved the best perfor-
mance with AUC of 0.901.

The contrast-enhanced CT is the most applicable imag-
ing modality in such diseases, and the imaging presenta-
tion of HP correlates with its histological components. 

Fig. 3  Different resampling method auc performance in plain phase (A), arterial phase (B), venous phase (C), delayed phase (D) and combined phase 
(E) on the validation set
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HP is often presented as a well-defined intramural ovoid 
mass on CT images, with a diameter of less than 3  cm. 
Lesions consisting mainly of acinar tissues tend to have a 
higher or equal degree of enhancement than the pancreas 
in situ, whereas lesions consisting mainly of ductal struc-
tures and hyperplastic muscular layers tend to have a 

lower degree of enhancement than the normal pancreas. 
However, both lesions of HP and GISTs are presented 
with homogeneous enhancement. In our study, except for 
the combination phase, the arterial phase model achieved 
the best performance compared to other phases. The 
mean AUC in different resampling methods was 0.901 on 
the validation set, and the remaining phases were 0.867, 
0.859, and 0.772, respectively.

As a branch of artificial intelligence (AI), radiomics 
has become one of the most popular research fields in 
medical imaging. When radiomics is combined with 
machine learning, it can exert the best efficacy of a 
model. Although radiomics has a long way to go before 
it can be applied in reality, there are some studies that 
demonstrate its potential value [16–19]. The essence of 
radiomics is a large pile of radiomics features, and the 
feature values between different classes can be mined and 
analyzed to reflect the status of a disease.

There are several overlapping features across the dif-
ferent resampling methods, with the feature ‘Sphericity’ 
occupying 50% (2/4). ‘Sphericity’ is defined as a mea-
sure of the roundness of the shape of the tumor region 
relative to a sphere, where a value of 1 indicates a perfect 
sphere. In our analysis, the values of GISTs were found 
to be significantly higher than those of HP in the arterial 
phase (0.5 × 0.5 × 0.5 mm3: 0.730 (0.714–0.759) vs 0.696 
(0.663–0.718) [p < 0.001]; 1 × 1 × 1 mm3: 0.778 (0.757–
0.810) vs 0.741 (0.706–0.774) [p < 0.001]; 2 × 2 × 2 mm3: 
0.815 (0.772–0.841) vs 0.776 (0.742–0.796) [p = 0.001]), 
as well as in the venous phase (0.5 × 0.5 × 0.5 mm3: 

Table 2  The diagnostic performance of each model in training and validation sets
Training set Validation set
AUC ACC SEN SPE AUC ACC SEN SPE

Plain phase
  0.5 mm 0.846 (0.743–0.949) 0.833 0.868 0.786 0.906 (0.777-1) 0.893 0.813 1.000
  1 mm 1 (1–1) 1.000 1.000 1.000 0.789 (0.617–0.963) 0.786 0.789 0.778
  2 mm 0.895 (0.818–0.972) 0.864 0.816 0.929 0.906 (0.791-1) 0.857 0.875 0.833
Arterial phase
  0.5 mm 0.920 (0.851–0.989) 0.864 0.868 0.857 0.939 (0.839-1) 0.893 0.875 0.917
  1 mm 0.972 (0.931-1) 0.939 0.921 0.964 0.901 (0.775-1) 0.857 0.875 0.833
  2 mm 0.946 (0.884-1) 0.909 0.895 0.929 0.865 (0.729-1) 0.821 0.938 0.667
Venous phase
  0.5 mm 0.959 (0.907-1) 0.924 0.895 0.964 0.854 (0.702-1) 0.821 0.813 0.833
  1 mm 0.864 (0.775–0.952) 0.833 0.895 0.750 0.823 (0.648–0.998) 0.821 0.750 0.917
  2 mm 0.943 (0.889–0.996) 0.894 0.947 0.821 0.901 (0.754-1) 0.893 0.875 0.917
Delayed phase
  0.5 mm 0.919 (0.838-1) 0.879 0.868 0.893 0.807 (0.635–0.980) 0.821 0.813 0.833
  1 mm 0.962 (0.898-1) 0.955 0.974 0.929 0.766 (0.587–0.944) 0.714 0.563 0.917
  2 mm 0.848 (0.750–0.946) 0.803 0.811 0.793 0.743 (0.537–0.949) 0.786 0.941 0.545
Combined phase
  0.5 mm 0.997 (0.991-1) 0.985 1.000 0.964 0.953 (0.881-1) 0.929 0.938 0.917
  1 mm 0.996 (0.989-1) 0.970 0.947 1.000 0.880 (0.748-1) 0.857 0.938 0.750
  2 mm 0.937 (0.875–0.999) 0.879 0.895 0.857 0.885 (0.741-1) 0.857 0.812 0.917
AUC, the area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity

Table 3  The auc comparison of different resampling method 
using Delong method in validation set
Scan phases Resampling AUC P
Plain

0.5 mm vs. 1 mm 0.91 vs. 0.79 0.295
0.5 mm vs. 2 mm 0.91 vs. 0.91 1
1 mm vs. 2 mm 0.79 vs. 0.91 0.276

Arterial
0.5 mm vs. 1 mm 0.94 vs. 0.90 0.379
0.5 mm vs. 2 mm 0.94 vs. 0.86 0.321
1 mm vs. 2 mm 0.90 vs. 0.86 0.632

Venous
0.5 mm vs. 1 mm 0.85 vs. 0.82 0.659
0.5 mm vs. 2 mm 0.85 vs. 0.90 0.517
1 mm vs. 2 mm 0.82 vs. 0.90 0.465

Delayed
0.5 mm vs. 1 mm 0.81 vs. 0.77 0.694
0.5 mm vs. 2 mm 0.81 vs. 0.74 0.643
1 mm vs. 2 mm 0.77 vs. 0.74 0.873

Combined
0.5 mm vs. 1 mm 0.95 vs. 0.88 0.177
0.5 mm vs. 2 mm 0.95 vs. 0.89 0.275
1 mm vs. 2 mm 0.88 vs. 0.89 0.951
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0.724 (0.703–0.750) vs 0.701 (0.660–0.731) [p = 0.005]; 
1 × 1 × 1 mm3: 0.765 (0.745-0.800) vs 0.744 (0.703–0.770) 
[p = 0.008]; 2 × 2 × 2 mm3: 0.807 (0.768–0.847) vs 0.792 
(0.737–0.820) [p = 0.024]). This study is consistent with 
Jang’s report [20]. GISTs are composed of spindle cells, 
epithelioid cells, or a mixture, and are more likely to be 
round in shape than HP, which commonly exhibits a 
slender appearance similar to that of a normal pancreas. 
According to the report by Li et al. [21], they found that 
GISTs (42%) were significantly rounder than HP masses 
(8%). However, this phenomenon disagrees with Yang’s 
research [22]. For the overlapping feature ‘Median’ in the 
plain phase, the value in the HP group is higher than that 
in the GISTs group in resampling of 0.5 × 0.5 × 0.5 mm3 
(42.5 (39.5–48) vs 33 (28–38) [p < 0.001]), 1 × 1 × 1 mm3 
(43 (39.25–48.25) vs 33 (28–39) [p < 0.001]), and 2 × 2 × 2 
mm3 (43 (39–48) vs 33 (27.250-39.625) [p < 0.001]). For 
the overlapping feature ‘Mean’ in the venous phase, the 
value in the HP group is also higher than that in the 
GISTs group in resampling of 0.5 × 0.5 × 0.5 mm3 (86.141 
(74.459–102.600) vs 68.975 (61.223–78.842) [p < 0.001]), 
1 × 1 × 1 mm3 (85.901 (75.048-103.251) vs 70.538 (61.293–
79.036) [p < 0.001]), and 2 × 2 × 2 mm3 (83.729 (73.346-
103.957) vs 70.349 (59.756–77.962) [p < 0.001]).

Our study has several limitations. First, the use of mul-
tiple CT scanners in this retrospective study resulted in 
nonconformity of the scanning parameters and volumes 
of contrast media. To address this issue, we normalized 
the grey level and resampled the voxel spacing to elimi-
nate the possible adverse effects. Second, the VOI was 
manually delineated by radiologists, which is time-con-
suming and subject to some degree of subjectivity. Third, 
the sample size is small, a prospective, multi-center, 
and large-scale population is still necessary for further 

validation., a prospective, multi-center, and large-scale 
population is still necessary for further validation.

Conclusions
Radiomics can serve as a noninvasive and quantita-
tive imaging biomarker to differentiate between HP and 
GISTs on CT images, thereby providing clinical guid-
ance to radiologists in decision-making. Furthermore, 
this study suggests that the diagnostic performance of 
radiomics is minimally affected by different resampling 
methods.
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