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Abstract
Objective  This study aims to classify tongue lesion types using tongue images utilizing Deep Convolutional Neural 
Networks (DCNNs).

Methods  A dataset consisting of five classes, four tongue lesion classes (coated, geographical, fissured tongue, and 
median rhomboid glossitis), and one healthy/normal tongue class, was constructed using tongue images of 623 
patients who were admitted to our clinic. Classification performance was evaluated on VGG19, ResNet50, ResNet101, 
and GoogLeNet networks using fusion based majority voting (FBMV) approach for the first time in the literature.

Results  In the binary classification problem (normal vs. tongue lesion), the highest classification accuracy 
performance of 93,53% was achieved utilizing ResNet101, and this rate was increased to 95,15% with the application 
of the FBMV approach. In the five-class classification problem of tongue lesion types, the VGG19 network yielded the 
best accuracy rate of 83.93%, and the fusion approach improved this rate to 88.76%.

Conclusion  The obtained test results showed that tongue lesions could be identified with a high accuracy by 
applying DCNNs. Further improvement of these results has the potential for the use of the proposed method in clinic 
applications.
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Introduction
Tongue diagnosis is a noninvasive and convenient 
method for assessing human health, and its visual exami-
nation constitutes one of the main steps in oral diagnosis 
[1, 2]. Therefore, people in need of health care can expect 
a routine tongue examination during a health assessment 
[3]. Various studies in the literature evaluate tongue fea-
tures such as its color, fur color, fur thickness, moisture, 
shape, teeth marks, holes, fissures, and stains to evalu-
ate health status [1, 3]. There are many studies in the lit-
erature to assess different systemic diseases evaluating 
tongue features. Among them, prediabetes and/or dia-
betes [4–6], gastric cancer [7–9], esophageal cancer [10], 
and colorectal cancer [11] have been studied in evaluat-
ing tongue features.

The need for objective diagnostic methods has 
increased since clinical evaluation is subjective and 
depends on the physician’s experience. In recent years, 
the integration of artificial intelligence (AI) applications 
into the healthcare system has provided physicians with 
tools for objective evaluations. Gomes et al. [12] clas-
sified oral lesion images into 6 classes using clinically 
obtained images of basic lesions. They used ResNet50, 
Vgg16, InceptionV3, and Xception-based transfer learn-
ing models for classification. Islam et al. [13] used 
VGG19, DeIT, and MobileNet deep learning (DL) algo-
rithms to classify oral lesions. Keser et al. [14] developed 
a DL approach to identify oral lichen planus lesions using 
photographic images and performed classification on all 
test images for both healthy and diseased mucosa images 
using Google Inception V3 architecture. Welikala et al. 
[15] used ResNet101 and Faster-RCNN DL models to 
detect malignant lesions and their classification.

In this study, lesion types of fissured tongue (FT), 
coated tongue (CT), geographic tongue (GT), and 
median rhomboid glossitis (MRG) along with healthy/
normal tongue (NT) images are classified utilizing vari-
ous DCNN with transfer learning. Also, majority voting 
is applied for the first time in the literature to improve the 
classification performance of tongue lesions. To evaluate 
the performance of the proposed classification approach, 

a new tongue lesion image dataset was constructed. 
All images were gathered from a specific medical cen-
ter. Also, this dataset includes rare CT and MRG lesion 
types, and it has the potential to be used as a benchmark 
for this area.

Methods and material
The Atatürk University Faculty of Dentistry’s Research 
Ethics Committee accepted the study, and all procedures 
were followed in accordance with the Declaration of Hel-
sinki’s principles (Decision No. 04/2021) and informed 
consent was obtained from the patients for this study.

Dataset
In the study, a new dataset was constructed and 
employed for the classification of tongue lesions. The 
dataset samples consist of images taken from patients 
who admitted to Faculty of Dentistry, Atatürk University 
for various dental problems. This dataset has 5 classes, 
of which 4 classes represent tongue lesions and 1 class 
represents NT images. They classes are briefly described 
below:

 	• NT; is pink in color, of medium thickness, without 
fissures, and has a slightly white and moist structure 
[16] as shown in Fig. 1a.

 	• FT (scrotal tongue, folded tongue, lingua plicata, 
tongue crack); is a common normal variant of the 
tongue surface. There are fissures of varying depths 
on the dorsal surface of the tongue, extending to the 
margin and limited to the anterior two-thirds [17] as 
shown in Fig. 1b.

 	• GT; is a benign, often asymptomatic, inflammatory 
condition of unknown cause that most commonly 
affects the dorsal aspect of the tongue. Especially in 
people who smoke, drink excessively, or have poor 
oral hygiene, shorter duration of lesions and more 
localized lesions may indicate malignancy [18]. A 
sample image is shown in Fig. 1c.

Fig. 1  Examples of tongue lesions images: (a) normal/healthy tongue; (b) fissured tongue; (c) geographic tongue; (d) coated tongue; (e) median rhom-
boid glossitis
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 	• CT (hairy tongue); is a benign condition caused 
by elongation of filiform papillae due to keratin 
deposition and is usually asymptomatic. It appears 
as a hairy covering on the dorsum of the tongue that 
protects the tip and lateral edges. Color depends 
on external factors such as diet smoking, and 
chromogenic bacteria, and varies from cream to 
brown and black, depending on internal factors such 
as fungi [19] as shown in Fig. 1d.

 	• MRG; is characterized by papillary atrophy located 
at the back of the tongue, typically in front of 
the circumvallate papillae. It appears as a well-
circumscribed area of papillary atrophy in the 
midline of the tongue, in the shape of an ellipse or 
rhombus [20].. A sample image is shown in Fig. 1e.

Tongue image sample collection during the dataset cre-
ation process should meet some characteristics [21, 22]. 
Despite standardized tongue-imaging training, abnor-
mal tongue images are nonetheless frequent in clinical 
tongue-imaging, both from operators and participants. 
These criteria are all considered during the construction 
of this new dataset with 623 tongue images. Their distri-
bution over the classes is shown in Table  1. All dataset 
images were converted into joint photographic experts 
group (JPEG) format, and they have been resized based 
on the utilized network.

In the labeling step of the constructed dataset, two oral 
diagnosis and dentomaxillofacial radiology experts, one 
with over 20 years of clinical experience, independently 
labeled all tongue images determined to be of good qual-
ity. Then, the two experts jointly labeled a small number 
of images with unmatching labels, and finally, for images 

where consensus could not be reached, a dermatologist 
was consulted.

Classification networks and transfer learning
The block diagram of the study is shown in Fig. 2. It con-
sists of three main blocks of resizing, classification, and 
majority voting to obtain the final tongue image clas-
sification. Four different DCNNs were utilized in the 
proposed study for tongue classification. Since these net-
works require a great amount of data during the training 
step, a transfer learning approach was utilized to tailor 
these networks for tongue classification with the avail-
able moderate amount of data. Transfer learning is using 
the knowledge, gained from one task, in others. This 
helps to tackle tasks using DL and machine learning algo-
rithms [23].

DCNNs, employed in the study, are briefly described 
here.

VGG19  The architecture VGG19 consists of 3 fully con-
nected layers, 16 convolution layers, 1 SoftMax layer, and 
5 MaxPool layers. The number of filters in the convolution 
layers includes 64, 128, and 256 [24].

ResNet50  The ResNet50 architecture consists of 5 parts, 
and each part consists of a convolution block and an iden-
tity block containing 3 convolution blocks. It consists total 
of 50 neural network layers. In the ResNet50 architecture 
skip connections are used to feed output from one layer 
to the next [25].

ResNet101  The ResNet101 architecture consists of 
33-layer blocks. Among these, 29 blocks directly use the 
output of the previous block, while the remaining 4 blocks 
utilize the output of the previous block in a convolutional 
layer with a filter size of 1 × 1 [26].

Table 1  Distribution of the number of data by classes
Classes Coated Fissured Geographic Median Normal
Number of 
Data

84 142 175 67 155

Fig. 2  Block diagram of study
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GoogLeNet  The GoogLeNet architecture includes a total 
of 22 layers. It consists of three different filters 1 × 1, 3 × 3, 
and 5 × 5 as described in [27].

These networks were pre-trained using a 1000-cate-
gory ImageNet dataset containing more than 10 million 
images and designed for visual object recognition prob-
lems. During the transfer learning process, all layers of 
the networks except their last three layers have remained 
the same. In contrast, these last three were replaced with 
Fully Connected Layer, Softmax Layer, and Classification 
Layer. The output size of all networks was replaced with 
either 2 or 5 depending on the classification problem.

Fusion of classification decisions using majority voting
In the fusion approach, the voting process is utilized 
to combine multiple classifier decisions to obtain a 
better classification performance. One of the com-
mon approach is the fusion based on majority voting 
(FBMV) that assigns a particular sample to its frequently 
observed class identity. That is, the mode value of deci-
sions obtained from multiple networks is assigned as the 
label of a particular sample [28]. In majority voting based 
fusion step of the proposed study, a label is assigned for 
a particular test sample prediction if three or more net-
works predict the same class label for this sample. In case 
of equality as a result of the even number of employed 
classification networks, the class label for the sample is 
assigned randomly.

Experimental setup
During the experimental studies, all images in the data-
set were resized according to the network input layer 
requirement as the pre-processing step. Momentum 
Stochastic Gradient Descent (SGDM) was used as the 
optimization algorithm in each model. Additionally, 
to achieve high classification performance, Minibatch-
Size, Validation Frequency, InitialLearnRate, and Epoch 
hyperparameters were adjusted. These hyperparameter 
values, used for each model, are shown in Table 2. Also, 
5-fold cross-validation was applied to avoid overfitting.

During all experiments, studies were implemented 
on a 64-bit Ubuntu 18.04 system with 128GB RAM and 

NVIDIA GeForce RTX 2080 TITAN graphics processing 
unit.

Evaluations metrics
The Confusion matrix is used to measure the quality of 
classification performance, and it was used in the cur-
rent study to evaluate the performance of four DCNNs. 
The major components of a binary confusion matrix are 
given in Table  3 [29]. This matrix defines the counts of 
true positive (TP), false positive (FP), false negative (FN), 
and true negative (TN) tests. Based on these test results, 
Accuracy, Sensitivity, Specificity, Precision, Recall and F1 
Score test metrics are obtained as given as follows.

	
Accuracy =

TP + TN

TP + FP + FN + TN
� (1)

	
Sensitivity =

TP

FN + TP
� (2)

	
Specificity =

TN

TN + FP
� (3)

	
Precision =

TP

TP + FP
� (4)

	
Recall =

TP

TP + TN
� (5)

	
F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
� (6)

Results
In the first step of the study, the tongue lesion dataset was 
divided into two classes of “normal/healthy” and “lesion”, 
both with 155 samples to form a balanced data distribu-
tion. The 2-class classification process was performed on 
four DCNNs. The obtained accuracy metrics of all mod-
els for each fold are shown in Table  4. As can be seen 
from this table, the highest success rate was achieved for 
ResNet101 with 93.53% accuracy while that of the lowest 
was 89,83% with GoogLeNet. As a result of the FBMV, on 
the other hand, the accuracy improves to 95.15%.

In the second step of the study, classification was per-
formed on the 5-class dataset. The obtained accuracy 
results of each network are shown in Table  5, given for 

Table 2  Hyperparameters of models
Hyperparameters

MODEL Mini-
Batch 
Size

Optimizer Max 
Epoch

Initial 
Learn 
Rate

Val 
Freq

VGG19 5 SGDM 200 3e-4 50
RESNET50 5 SGDM 100 3e-4 50
RESNET101 5 SGDM 50 3e-4 100
GOOGLENET 5 SGDM 100 3e-4 100
SGDM: Momentum Stochastic Gradient Descent

Table 3  A confusion matrix for binary classification
Predict
Positive Negative

True Positive TP FN
Negative FP TN

TP: True positive; TN: True negative; FP: False positive; NF: False negative
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all folds. It is clear from this table, that the highest suc-
cess rate was obtained in the VGG19 model with 83.93%. 
Applying FBMV, it improves to 88.76%, as expected.

The confusion matrix of both binary-class and multi-
class classification test results are shown in Figs.  3 and 
4, respectively. True labels versus predicted labels are 
shown in both confusion matrices. The sum of the entries 
in each row represents the count of the data for this spe-
cific class. The numbers on the diagonal, on the other 
hand, shown in green represent the number of data cor-
rectly estimated while non-diagonal entries indicate the 
number of incorrectly estimated data. For example, there 
is a total of 84 data in the CT class. While 76 of these are 
classified correctly, incorrectly estimated data counts 
were 3, 1, 2, and 2 for FT, GT, MRG, and NT classes, 
respectively. The most errors were obtained in the GT 
class with 29 data, while the least errors were obtained in 
the NT class with 3 data, as shown in Fig. 4.

While evaluating the accuracy performance of the 
DCNNs, accuracy, sensitivity, specificity, and F1 score 

test metrics were evaluated as the data distribution 
among the classes is unbalanced in the dataset. In addi-
tion to this, average accuracy values were obtained, 
and all these test results are shown in Table  6. Among 
all networks, the highest accuracy rate of 90,64% was 
obtained in the GT class using ResNet50. As a result of 
the fusion, the accuracy rate improves to 92,99%. Sensi-
tivity value was also evaluated for each class in all net-
works. ResNet50 produced 96.13%. the highest sensitivity 
rate in the NT class while it was improved to 98.06% as 
a result of fusion. While the highest specificity value of 
98.38% was obtained in the MRG among all five classes 
with the use of VGG19 and ResNet101 networks, the 
application of the fusion increases this score to 99.1%. 
Finally, the highest F1 score of was obtained as 88.73% 
and 92.12% with ResNet50 and application of the fusion 

Table 4  Accuracy values of models for binary classification in each fold
MODELS/FOLDS FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 AVERAGE (%)
VGG19 91,94 91,94 86,89 93,55 88,71 90,61
RESNET50 85,48 93,55 90,16 90,32 91,94 90,29
RESNET101 93,55 95,16 93,44 91,94 93,55 93,53
GOOGLENET 88,7 95,1 88,52 87,1 88,71 89,83
FUSION 95,15

Table 5  Accuracy values of models for multi class classification in each fold
MODELS/FOLDS FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 AVERAGE (%)
VGG19 81.45 80.15 82.92 88.88 86.62 83.93
RESNET50 79.03 79.36 79.67 83.33 83.06 80.89
RESNET101 81.45 83.33 79.67 84.12 81.45 82
GOOGLENET 77.41 84.92 81.3 83.33 82.25 81.84
FUSION 88.76

Fig. 4  Confusion matrix of fusion in multi class classification

 

Fig. 3  Confusion matrix of fusion in binary classification
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process, respectively. These obtained test results show 
the effectiveness of the proposed method in the tongue 
lesion classification problem.

Discussion
Blending old information with new technological devel-
opments makes artificial intelligence technology more 
functional for physicians. In recent years, DL meth-
ods have been widely studied in various applications 
including tongue diagnosis. They provide objective and 
quantitative evaluation and facilitate physicians in the 
differential diagnosis of tongue lesions. In this regard, DL 
based tongue segmentation, tongue-type classification, 
and tongue related disease identification have been stud-
ied in the literature [30]. Among these, FT [20, 31], tooth-
marked tongue [32, 33], tongue prickles [34], recognition 
performance, tongue image standardizing [5, 21], clas-
sification of tongue features such as color, movement, 
shape [1, 3, 8, 35], and tongue-coating systemic-disease 
relationship [4, 5, 7, 8, 36, 37] studies suggest promising 
results.

The proposed study has several unique aspects that 
distinguish it from existing literature. It employs state-of-
the-art DL methods, is a multi-class study, and suggests 
high-accuracy performance. Additionally, it involves the 
classification of both CT and MRG and uses a dataset 
that is robust against inter-sample variation.

In terms of applying modern DL methods, Yang et al. 
[38] have developed intelligent tongue diagnosis sys-
tems that employ DL methods to quickly and accurately 
identify tongue pathological features. They utilized 
YOLOv5s6, U-Net, and MobileNetV3 models for tongue 
recognition, tongue region segmentation, and tongue fea-
ture classification, respectively. Classification accuracy 
rates for teeth marks, stains and fissures were obtained as 
93.33%, 89.60% and 97.67%, respectively. Heo et al. [39], 
DL was used to identify tongue cancer patients extract-
ing 5576 tongue images obtained from 12,400 endo-
scopic images. DenseNet169, the best model, yielded an 
AUROC value of 0.895 and an AUPRC value of 0.918. In 
another study to classify and detect oral potential malig-
nant disorders (OPDM) that turn into oral cancer, AUC 
was obtained as 95% in DenseNet121 and ResNet50 
models used for two-class classification using 300 OPDM 
and 300 normal oral mucosa images [40]. The detection 
performance of 74.34% AUC was achieved with R-CNN. 
In this regard, the proposed study was also performed 
through the use of a similar size dataset with 623 clini-
cal images but it was implemented as a multi-class clas-
sification problem and it yielded an accuracy rate over 
88%. Also, in two classes of normal tongue and other 
classification problems, 95% accuracy performance was 
obtained.

Table 6  Accuracy, Sensitivity, Specificity and F1 Score values in each model of 5 classes
MODELS CLASSES ACCURACY SENSITIVITY (%) SPECIFICITY (%) F1 SCORE (%)
VGG19 Coated/Hairy 83,53 84.52 97.40 84.02

Fissured 82,10 83.80 94.59 82.93
Geographic 85,03 81.14 94.42 83.04
Median 84,48 79.10 98.38 82.17
Normal 84,15 89.03 94.44 86.52

RESNET-50 Coated/Hairy 76,54 73.81 96.47 75.15
Fissured 80,85 72.00 97.10 80.25
Geographic 90,64 86.90 97.10 88.73
Median 80,30 79.10 97.66 79.70
Normal 76,02 96.13 89.96 84.90

RESNET-101 Coated/Hairy 78,89 84.52 94.47 81.61
Fissured 81,12 81.69 94.39 81.40
Geographic 86,36 76.00 95.31 80.85
Median 84,21 71.64 98.38 77.42
Normal 79,89 92.26 92.31 85.63

GOOGLENET Coated/Hairy 81,18 82.14 97.03 81.66
Fissured 78,47 79.58 93.56 79.02
Geographic 84,47 77.71 94.42 80.95
Median 79,17 85.07 97.30 82.01
Normal 83,85 87.10 94.44 85.44

FUSION Coated/Hairy 87,36 90.48 97.96 88.89
Fissured 86,01 86.62 95.84 86.32
Geographic 92,99 83.43 97.54 87.95
Median 91,80 83.58 99.10 87.50
Normal 86,86 98.06 95.09 92.12
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Hu et al. [30], in their retrospective study, developed a 
new framework, TongueNet, that performs better com-
pared to InceptionV3 and ResNet18 in terms of the accu-
racy rate of detecting 721 FTs. In another retrospective 
study, Yan et al. [31] reported tongue crack extraction and 
recognition based on Segmentation-Based Deep Learn-
ing (SBDL) utilizing Mask R-CNN, DeeplabV3+, U-Net, 
UNet++, and SegAN algorithms on a tongue image data-
set with 176 cracked-tongue samples and 140 crack-free 
samples. They stated that SBDL is effective in recogniz-
ing tongue fissures, and it solves the problem of removing 
incorrect tongue fissures that may arise from a few data 
sets. They also claimed that this strategy produces opti-
mistic results for tongue crack removal and recognition. 
A similar problem of detecting FT but in a 5-class data-
set was also performed in the current study. Four differ-
ent networks, namely VGG19, ResNet50, ResNet101 and 
GoogLeNet, were employed to compensate for a network 
being delicate to a specific metric as a result of conduct-
ing experiments on a moderate-size dataset. The highest 
accuracy rate of 86.01% and sensitivity ratio of 86.62% 
using the fusion approach and the highest specificity 
ratio of 97.1% using ResNet50 were obtained.

Although there are studies in the literature that evalu-
ated the color and thickness of tongue coating [11, 41], 
no specific study, to the best of our knowledge, was per-
formed for CT the classification. The only study by Wang 
et al. [34] developed an oily tongue coating recognition 
approach using convolutional neural networks, and they 
obtained an accuracy rate of 88.8% on a tongue image 
dataset with 1486 samples. In the proposed study, the 
classification of 84 CT images was performed. The high-
est accuracy rate of 87.36% and the highest sensitivity 
ratio of 90.48% and the highest specificity rate of 97.96% 
using fusion were obtained.

Zhang et al. [42] reported that GT was significantly 
associated with FT, burning mouth syndrome, oral lichen 
planus, and gastrointestinal disorders, but not with sys-
temic diseases such as recurrent aphthous ulcers or car-
diovascular diseases. Shamim et al. [43] evaluated the 
tongue lesion classification performance of five classes, 
namely FT, GT, HT and two other rare precancerous 
tongue lesions, utilizing six DCNNs models applying 
transfer learning. Compared to this study, the proposed 
work not only standardizes the dataset but also employs 
FBMV in tongue lesion classification problem for the first 
time in the literature. A total of 175 GT samples were 
included in the study, and the highest sensitivity rate of 
%86.90 using ResNet50 and the highest accuracy and 
specificity values of 92.99% and 97.54% using fusion were 
obtained respectively.

MRG evaluation based on ML has not been stud-
ied in the literature. The current study, on the other 
hand, contains 67 MRG samples in the freshly proposed 

dataset, and the highest accuracy rate of 91.8% and high-
est specificity rate of 99.10% were obtained using fusion 
while GoogLeNet yielded the highest sensitivity ratio of 
85.07%.

Finally, the classification of 155 NT images, included in 
the proposed study, resulted in the highest accuracy rate 
of 86.86%, sensitivity rate of 98.06%, and specificity rate 
of 95.09% all employing fusion.

In the proposed study, a five-class dataset, consisting of 
four different tongue lesions and normal/healthy tongue 
images, was created. This dataset includes rare CT and 
MRG lesion samples, and it has the potential to be used 
as a benchmark in this area as it is constructed using 
images of a specific medical center with less imaging 
variability. In the study, a new dataset was classified uti-
lizing four DL approaches. Since this moderate-size data-
set is unbalanced among the classes, a transfer learning 
approach was employed to compensate for this problem. 
Also, each DL model was processed through 5-fold cross-
validation to assess the accuracy and generalizability of 
the predictive models as well as avoid from risk of overfit-
ting. Despite all these limitations, the proposed approach 
shows a good performance in the tongue lesions classifi-
cation problem.

Conclusion
FBMV was used to perform a 5-class tongue lesion clas-
sification problem for the first time in the literature. The 
obtained classification accuracy performance was over 
95% in the 2-class problem and 88% in the 5-class prob-
lem. In future, we plan to improve the classification per-
formance by expanding the dataset samples as well as 
compensate for its unbalanced distribution. Also, it is 
planned to include new lesion classes in the dataset to 
increase the effectiveness of the current framework. By 
that, the proposed work can help medical profession-
als in clinical settings to diagnose and screen for tongue 
lesions.
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