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Abstract 

Background  Quantitative determination of the correlation between cognitive ability and functional biomarkers 
in the older brain is essential. To identify biomarkers associated with cognitive performance in the older, this study 
combined an index model specific for resting-state functional connectivity (FC) with a supervised machine learning 
method.

Methods  Performance scores on conventional cognitive test scores and resting-state functional MRI data were 
obtained for 98 healthy older individuals and 90 healthy youth from two public databases. Based on the test scores, 
the older cohort was categorized into two groups: excellent and poor. A resting-state FC scores model (rs-FCSM) 
was constructed for each older individual to determine the relative differences in FC among brain regions compared 
with that in the youth cohort. Brain areas sensitive to test scores could then be identified using this model. To suggest 
the effectiveness of constructed model, the scores of these brain areas were used as feature matrix inputs for training 
an extreme learning machine. classification accuracy (CA) was then tested in separate groups and validated by N-fold 
cross-validation.

Results  This learning study could effectively classify the cognitive status of healthy older individuals according 
to the model scores of frontal lobe, temporal lobe, and parietal lobe with a mean accuracy of 86.67%, which is higher 
than that achieved using conventional correlation analysis.

Conclusion  This classification study of the rs-FCSM may facilitate early detection of age-related cognitive decline 
as well as help reveal the underlying pathological mechanisms.
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Introduction
Currently in many countries, as the proportion of older 
population increases, health problems of the older are 
getting more and more attention, among which, cognitive 
decline is a key factor that threatens the quality of life of 
the older. An age-related decline in cognitive abilities may 
be an early indicator of neurodegenerative and psychiat-
ric disorders such as Alzheimer’s disease (AD) [1]. Cogni-
tive evaluation of the older at an early stage and timely 
interventions will help reduce the rate of deterioration. 
Traditionally, older adults cognitive abilities have been 
assessed by traditional cognitive scale tests designed, 
licensed, and measured by psychologists [2, 3]. How-
ever, the relationship between a healthy aging brain and 
cognitive performance is unclear, and the assessment of 
cognitive ability is still traditional to some extent. Com-
prehensive testing is time-consuming, complex and sub-
jective, which affects the accurate evaluation of cognitive 
functions of the older. At present, functional magnetic 
resonance imaging (fMRI) could provide objective meas-
urements of cognitive functions by the FC computing 
[4–6]. Furthermore, fMRI evaluations can be conducted 
both during tasks engaging specific neural networks or 
in the resting state to provide an unbiased assessment of 
network activity.

Resting-state fMRI (rs-fMRI) can reveal the FC of 
the whole brain by measuring the spatiotemporal cor-
relations in regional brain activity established [7–9]. In 
addition, rs-fMRI is noninvasive and objective, and in 
contrast to neuropsychiatric tests and task-dependent 
fMRI, can be conducted quickly (in less than 15  min), 
thereby permitting larger-scale screening of older popu-
lations free of outcome variations conferred by different 
cognitive tasks and subject scoring criteria. The conven-
tional FC has been defined by Pearson correlation and 
widely used. A growing number of studies have used 
fMRI techniques to construct FC matrices as a tool for 
early cognitive diagnostic sensitization of cognition in 
older adults, for example, Cera et al. calculated FC matri-
ces with anterior cingulate gyrus brain regions as seed 
points in healthy older adults and patients with mild cog-
nitive impairment (MCI), and found that FC matrices 
levels were significantly increased in the ventral part of 
the anterior cingulate cortex with bilateral caudate and 
ventral medial prefrontal cortex in healthy older adults as 
compared to those with MCI [10].

Now, several well-known fMRI-based consortium pro-
jects have supplied public fMRI datasets to estimate the 
FC matrices, including the International Consortium for 
Brain Mapping established in 1992; the United States 
Human Connectome Project (HCP), which provided a 
stable brain function computing template. And the Brain 
Genomics Superstructure Project (GSP) established by 

Harvard Medical School in 2014 [11]. As a pioneer, a 
profound public cohort, Leading Eigenvector Dynamics 
Analysis (LEiDA) [12], provided the rs-fMRI data and the 
psychometric scale tests performances in healthy aging. 
In particular, the emerging of multi-site homogenization 
in recent years, such as the ComBat multi-site homog-
enization algorithm, can get rid off the heterogeneous 
functional connection values across different datasets, 
therefore, it is popular to make use of these plentiful data 
sources in the world [13].

Previous studies have found that the youth exhibit an 
optimal network framework for language processing 
characterized by highly integrated local networks with 
strong FC matrices and weaker FC matrices between 
networks [14], whereas older individuals with reduced 
language comprehension demonstrate a suboptimal net-
work structure characterized by stronger FC matrices 
between networks [15]. These findings may help identify 
older individuals at risk of progressive cognitive impair-
ment, thereby facilitating timely intervention. At present, 
a combination of structural MRI and machine learning is 
used to classify older individuals with cognitive impair-
ment [16, 17]. However, there are few models to identify 
quantitative regional FC biomarkers sensitive to cognitive 
scores among healthy older individuals. Here, we pro-
pose the rs-FCSM to estimate the degree of FC deviation 
between an older individual and a youth cohort from the 
connectome with the help of homogenization technol-
ogy, for purpose of improving conventional FC comput-
ing of Pearson correlation up to a high level and taking 
advantage of two-site valuable connectome datasets. To 
depict the ability of the rs-FCSM, its combination with a 
machine learning model was employed to classify older 
individuals with excellent or poor cognition. The study 
flowchart is shown in Fig. 1.

Material and methods
Experimental dataset
Healthy older groups
Older individuals were selected from a public data-
set LeiDA derived from a cohort study involving 1,051 
healthy Portuguese older individuals aged > 50 years, who 
were subjected to nine neuropsychological tests [12]. The 
tests were approved by certified psychologists. Further-
more, Santos et  al. used Principal Component Analysis 
applied to all neuropsychological data, two main dimen-
sions of cognitive performance were identified, one being 
related to memory and the other to general executive 
functioning. Cluster analysis based on the scores of these 
two dimensions and those of other related variables such 
as health status revealed four functional categories: C1 
(excellent cognition) > C2 > C3 > C4 (poor cognition) [18]. 
Ninety-eight subjects were randomly selected from the 
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C1 and C4 groups to undergo rs-fMRI scans: 55 subjects 
with excellent cognitive scores (excellent group) and 43 
with poor cognitive scores (poor group). The excellent 
cognition level (C1) and poor cognition level (C4) among 
the four cognitive levels of healthy older adults were 
chosen as the subjects of the study because it was con-
sidered that the brain regions with functional differences 
were better highlighted in the two larger cognitive level 
differences.

Prior to the acquisition, participants were instructed 
to remain still with eyes closed, not to fall asleep and 
not to think about anything. The fMRI acquisition was 
performed using a clinical approved 1.5T Siemens Mag-
netom Avanto (Siemens Medical Solutions, Erlangen, 
Germany) MRI scanner with a 12-channel receive-only 
head coil at Hospital de Braga (Portugal). A blood oxy-
genation level-dependentsensitive (BLOD) echo-planar 
imaging (EPI) sequence was used with the following 
parameterization: 30 axial slices, time of repetition (TR)/ 
time of echo (TE) = 2000/30  ms, flip angle (FA) = 90°, 
voxel size = 3.5 mm3, field of view (FOV) = 134.4 mm2.

This study was performed in accordance with the Dec-
laration of Helsinki (59th amendment), and all subjects 
provided written informed consent [18].

Healthy young group
Ninety healthy youth aged 18–35  years were selected 
from > 1500 subjects in the GSP database [11]. Since the 
subject of the study is Portuguese and the reference sub-
ject is American, this could introduce potential differ-
ences in the calculations of the model. On the one hand, 
the researcher considered that in the calculations, all the 
Portuguese did the calculations with every American, 
while in the end it was the Portuguese of both cognitive 
levels who did the analysis of variance between them, so 
there was the possibility that the effects of the different 

ethnicities were canceled out in the process; on the other 
hand, in order to reduce the heterogeneity, the Combat 
algorithm was used to de-heterogenize the two catego-
ries. As a result, young Americans were finally selected as 
the reference for calculating the scores.

The dataset for each participant in the GSP database 
includes 1) basic demographic and health information 
before and after MRI scans, 2) structural and functional 
MRI scans. Before scanning, all neurological functions, 
psychological evaluations, and language comprehension 
scores are higher than the population median. Subjects 
with mental illness or a history of mental illness were 
excluded.

All imaging data were collected on matched 1.5T Sie-
mens Magnetom Avanto (Siemens Healthcare, Erlan-
gen, Germany) at Harvard University and Massachusetts 
General Hospital using the vendor-supplied 12-channel 
phased-array head coil. Functional imaging data were 
acquired using a gradient-echo EPI sequence sensi-
tive to BOLD contrast. EPI parameters were as follows: 
TR = 3,000 ms, TE = 30 ms, FA = 85°, voxel size = 3 mm3, 
FOV = 216 mm2. During BOLD data collection, partici-
pants were instructed to remain still, stay awake.

This study was performed in accordance with the Dec-
laration of Helsinki (59th amendment), and all subjects 
provided written informed consent [11].

Data pre‑processing
Healthy older groups
All of the rs-fMRI data preprocessing of the older has 
been completed by the data disclosure party before open. 
These rs-fMRI data were pre-processed in the following 
steps using the FMRIB software library (FSL V5.07) [19]. 
(1) The first five acquisition time series were removed to 
stabilize the signal. (2) Slice timing correction was per-
formed. (3) MCFLIRT software was used to perform 

Fig. 1  Study flowchart
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rigid body alignment motion correction [20]. (4) Skull 
stripping with the Brain Extraction Tool. (5) Nonlinear 
normalization through continuous rigid body registra-
tion was performed. FLIRT software was employed to 
obtain the structure from the original space, and nonlin-
ear registration was performed in Montreal Neurological 
Institute standard space, followed by re-sampling to an 
isotropic voxel size of 2 mm3. (6) Linear regression was 
conducted to remove motion parameters, mean cerebro-
spinal fluid signals, and white matter (WM) signals. (7) 
Finally, band-pass time filtering of regression residuals 
(0.01‒0.08  Hz) was conducted [18]. The database only 
discloses data files of the older after matching the auto-
matic anatomical labeling (AAL, Version No.1) atlas [21].

Healthy young group
The rs-fMRI data in the young group were preprocessed 
by using the software FMRIB [19]. The processing pro-
cedure and quality inspection (framewise displacement 
[FD] < 0.2  mm) were conducted at Martinos Center for 
Medical Imaging, Harvard Medical School, USA. The 
processing station was Intel Xeon Sliver 4112 × 16 with 
the operating system of Centos 7.6, and the preprocess-
ing time was about 15 h for each subject.

Data preprocessing was performed as follows: (1) 
Removal of the first four acquisition time series to stabi-
lize the signal; (2) Slice timing correction using SPM 12 
(http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/); (3) Rigid body cor-
rection for head motion using the FSL package; (4) Nor-
malization for global mean signal intensity across runs 
and registration of the signal to the standard space of 
Montreal Neurological Institute; (5) Band-pass temporal 
filtering (0.01 Hz-0.08 Hz) to reduce high-frequency sig-
nal interference; (6) Matching of the rfMRI data of each 
subject with the AAL Atlas.

The flowchart of the preprocessing is shown in Fig. 2.

Post‑processing
Functional connectivity (FC)
Conventionally, the coefficient of Pearson correlation is 
usually used as a FC to study the degree of dependence 
between time series on two brain areas during resting 

state, with an assumption of static BOLD signal, that all-
time series of BOLD signals would participate in a FC 
estimation. The coefficient is between—1 and + 1. Being 
greater than zero means positively correlated (i.e., if the 
activity of one brain area excited, the activity of another 
brain area would be excited, and vice versa). In reversal, 
being less than zero means negatively correlated, that 
is, if the activity of one brain area excited, the activity of 
another brain area would be inhibited; Being 1 means 
self- correlation, or being zero means no correlation 
between two brain areas. The absolute value of the coeffi-
cient represents for the degree of correlation. The greater 
the value, the stronger the correction is, and vice versa.

Here, the functional connection of Pearson was esti-
mated between two brain regions to form the correlation 
coefficient matrix. Since each subject’s brain was divided 
into 116 brain regions by the AAL atlas, a 116 × 116 
matrix were formed. Cohort characteristics are shown by 
subject-averaged FC matrices for two older groups, such 
as excellent group and poor group.

Combat multi‑center data homogenization
To address the issue of central heterogeneity among the 
data from different databases, the technology of Com-
Bat multi-center data homogenization will be performed 
among the databases FC matrices, for purpose of get-
ting rid off the data heterogeneity between multiple con-
nectome centrals to homogenize them. The triangular 
connection values on the FC matrices are arranged in a 
matrix transverse order, and each matrix is integrated 
into a 1*6670 connection vector. The ComBat multi-site 
homogenization algorithm takes all connection vectors 
as inputs and performs homogenization calculation [22]. 
Its core calculation is shown in formula (1):

Where, i is the center number, j is the subject number, v 
is the vector number within a single subject, yi,j,v is the v-th 
value of vector of the subject j at center i without homog-
enization, and av represents the average of the v-th value 

(1)yComBat
i,j,v =

yi,j,v−av−Xi,j∗βv−γ ∗

i,v

δ∗i,v
+ av + Xi,j ∗ βv

Fig. 2  Flowchart of pre-processing

http://www.fil.ion.ucl.ac.uk/spm/
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of vector in all subjects, Xi,j is the covariate design matrix, 
βv is the regression coefficient vector corresponding to 
X,γi,v and δi,v correspond to the additive and multiplicative 
effects of site connectivity, respectively. The parameter with 
“ʌ” represents the Bayesian estimation of the parameter, 
and the superscript with “*” on the parameter represents 
the empirical Bayesian estimation of the parameter.

After each connection vector was calculated by the Com-
Bat homogenization formula, the new connection vector 
could be refreshed to the FC matrix according to the origi-
nal matrix transverse order to complete the multi-center 
homogenization and the FC strength was derived for a 
single mean value at each brain region. A toolbox for sur-
faces, nodes, and edges in BrainNet Viewer software was 
employed to display FC networks [23].

Resting‑state FC scores model (rs‑FCSM)
To extract the functional neuroimaging markers sensi-
tive to the scores of cognitive scale tests of the healthy 
aging, the rs-FCSM was constructed from the differences 
in regional FC values between each older individual and 
the youth cohort. In the model, the regional FC difference 
between area “i” in older brain relative to areas “i” in the 
youth brains is expressed as a connectome distinctiveness 
index (CDI).

Where fs,i is the FC vector between the i-th brain region 
and other brain regions of the whole brain in the s-th older 
brain, fp,i is the FC vector between the i-th brain region and 
other brain regions of the whole brain in the p-th youth 
brain, N is the number of healthy youth, and CDIs,i is the 
value of the rs-FCSM of the i-th area in the s-th healthy 
older brain.

The CDIs,i values of 98 healthy older and 90 healthy 
young adults were calculated by row according to for-
mula (2), and finally collated to form a CDI of 98 × 116 for 
older brain (1 × 116 matrix for each individual) and a CDI 
of 90 × 116 for the young brain (1 × 116 matrix for each 
individual).

The distribution of CDI in the youth brain was evaluated 
using the equations:

(2)CDIs,i =
1

N − 1

N∑

p=1

(
1− corr

(
fs,i, fp,i

))

(3)mean_CDIi =
1

N

N∑

p=1

CDIp,i

(4)std_CDIi = sqrt



 1

N − 1

N�

p=1

�
CDIp,i −mean_CDIi

�2




where mean_CDIi represents the average CDIp,i for N 
healthy youth (N = 90) and std_CDIi is the standard devi-
ation of CDIp,i at the i-th brain area.

Relative to the healthy cohort, the Z score of CDIs,i in 
older individual is defined as

Where Zs,i denotes the final value of the rs-FCSM of 
the i-th brain area of the s-th subject in older cohort.

This rs-FCSM can objectively estimate the FC devia-
tion from the healthy youth for each AAL-labelled 
brain region, with higher values of the rs-FCSM indi-
cating a greater degree of deviation in an older individ-
ual compared with young cohort. As 98 healthy older 
individuals were examined, 98 × 116 index matrices 
were formed.

Extraction of functional biomarker regions by the rs‑FCSM
First, the difference between the mean values of the 
values of the rs-FCSM of each brain region of the two 
older groups was calculated, and recorded as Differ-
ence_mean. Second, the sum of the standard deviations 
of the values of the rs-FCSM of each brain region of the 
two older groups was calculated, and recorded as Sum_
std. Finally, the determination of theregion of interest 
(ROl) needs to meet two conditions at the same time, 
(1) ROIs belong to the top 10% of the brain regions 
(12 ROIs) with the largest Difference_mean; (2) ROIs 
do not belong to the top 10% of the brain regions with 
the largest Sum_std (12 ROIs).The extracted ROIs were 
regarded as the functional biomarkers regions sensitive 
to cognitive scores of the older and were projected to 
the cerebral cortex for visualization by the BrainNet 
viewer software [23].

To validate ROIs extracted by the above method, 
two kinds of analysis, such as a sensitivity analysis and 
a strict inter-group statistic, were employed. The sen-
sitivity analysis could display ROI character by the 
receiver operating characteristic (ROC) curve with the 
help of SPSS software (IBM SPSS Statistics 21; USA). 
The values of the rs-FCSM in ROIs between the excel-
lent group and the poor group were input into the sen-
sitivity analysis. The farther above the reference line, 
the more sensitive ROIs to cognitive scores of the older. 
On the other hand, the significant difference of the 
values of the rs-FCSM in ROIs between the excellent 
group and the poor group were respectively shown by 
the p values (p ≤ 5%) with a strict statistics, e.g., two-
sample t-test corrected by strict Bonferroni multiple 
comparisons (Mathworks Matlab 2018a; USA).

(5)Zs,i =
1

std_CDIi

(
CDIs,i −mean_CDIi

)
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Extreme learning machine
Feature vectors
The values of the rs-FCSM ROIs identified as functional 
biomarkers were then considered as feature vectors for 
the ELM input layer, with those from the poor group 
labeled as 1 and those from excellent the group labeled 
as 2.

ELM model
Compared with conventional artificial neural network 
models, an advantage of ELMs is that the model can ran-
domly generate both the connection weights between 
the input layer and the hidden layer and the threshold 
values of neurons in the hidden layer. For training, ELM 
requires only a known number of neurons in the hidden 
layer for it to converge on a unique optimal solution. A 
flowchart of ELM construction, training, and testing is 
shown in Fig. 3.

The main steps of the ELM model are as follows, (1) 
training and testing datasets of sufficient size for ELM 
generalization and prediction performance were estab-
lished, (2) the ELM was constructed and trained using 
the “elmtrain” function. A suitable number of hidden 
neurons was set for best performance, (3) simulation 
testing was conducted using the “elmredict” function to 
form the test set, (4) the accuracy of classification was 
then evaluated.

In ELM, the type parameter was set as 1 (Set to 1 to 
solve the classification problem and set to 0 to solve the 
regression problem), the number of neurons in the hid-
den layer was set to 500, and the activation function TF 
was set to “sig” type. Then, the Zs,i were trained and simu-
lated using ELM (Mathworks Matlab 2018a; USA).

N‑fold cross‑validation (N = 10)
In ELM, a N-fold cross-validation (N = 10) procedure was 
employed to test the accuracy of the algorithm as follows. 
The dataset was divided into 10 parts by setting 9 parts 
as the training data and 1 part as the testing data. Thus, 
classification accuracy could be assessed for each proce-
dure. The mean accuracy over 10 iterations was utilized 
to estimate the accuracy of the algorithm.

Results
Conventional FC
The subject-averaged FC matrices diagrams constructed 
from the rs-fMRI data of older individuals with excellent 
cognitive test scores resembled those constructed from 
the youth brains (Fig.  4). In contrast, the FC diagrams 
of older group with poor cognitive test scores exhibited 
substantial connectivity differences compared with the 
excellent group.

Functional biomarkers estimated using the rs‑FCSM
According to the previously defined rules for the deter-
mination of ROIs that are sensitive to cognitive scores 
(please “Extraction of functional biomarker regions by 
the rs-FCSM” section), the 12 brain regions (top 10% 
on AAL atlas) with the largest Difference_mean and 
Sum_std were counted in Fig.  5a, therefore, six sensi-
tive ROIs were extracted to cognitive scores. These six 
brain regions were validated by their ROC curves above 
the reference lines in Fig. 5b, and the significance values 
with two sample t-test under Bonferroni multiple com-
parisons in Table 1 (p <  < 5%). In Fig. 5c, six brain regions, 
e.g., AAL40 (ParaHippocampal_R), AAL47 (Lingual_L), 
AAL51 (Occipital_Mid_R), AAL52 (Occipital_Mid_L), 
AAL86 (Temporal_Mid_R) and AAL87 (Temporal_Pole_
Mid_L), were highlighted by BrainNet Viewer.

It was resulted that the rs-FCSM could extract func-
tional biomarkers of cognitive ability in healthy older 
adults, which were in parahippocampus, occipital lobe 
and temporal lobe regions.

Classification using the ELM model
Each of ten parts is used in turn as the test set and the 
rest as the training set for ELM machine learning classi-
fication. Positive is classified as high cognitive level (C1) 
and negative is classified as low cognitive level (C4). The 
average accuracy after N-fold cross-validation is 86.67% 
in Table 2.

Discussion
Sensitive brain areas identified by the rs‑FCSM
FC analysis is widely applied to localize dysfunctional 
brain areas at a group level. For example, Zhang et  al. 
reported that there were intergroup FC abnormalities 

Fig. 3  Flowchart of extreme learning machine (ELM) classifier
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in brain regions such as the hippocampus and middle 
temporal gyrus affected by mild cognitive impairment 
[24]. Moreover, Tang et  al. developed a FC model and 
found that patients with AD had decreased FC in the 
caudate gyrus, limbic lobe, medial frontal gyrus (MFG), 
middle temporal gyrus, superior frontal gyrus, parietal/
precuneus, inferior temporal gyrus, and posterior cin-
gulate gyrus compared to healthy controls [25].

Our work extends such studies by demonstrating that 
FC differences associated with cognitive function are 
detectable among healthy older at an individual level. 
The functional biomarkers identified by the rs-FCSM 
also overlap with areas demonstrating structural abnor-
malities. For instance, using diffusion tensor imaging, 
Bolzenius et al. found cognitive impairment was related 
to reduce structural integrity of the temporal lobes [26]. 
Mokrisova et  al. also found impaired path integration 
associated with reduced hippocampal volume and thin-
ning of the entorhinal and parietal cortices, suggesting 
that the neurodegeneration of the medial temporal lobe 
and parietal cortex are quantitative indicators of dis-
ease status [27]. In contrast to studies with group level 
analysis, the rs-FCSM could distinguish excellent from 
poor cognition in healthy older individuals (Fig. 4 and 
Table 2).

Greater sensitivity of the rs‑FCSM compared 
with conventional FC models
The rs-FCSM developed in this study identified FC changes 
in single brain areas able to distinguish excellent from poor 
cognition among healthy older individuals with 86.67% 
accuracy, whereas conventional FC analysis (Fig.  4) using 
Pearson coefficients could distinguish cognitive perfor-
mance only at the group level. Furthermore, doing same 
work by conventional FC model of Pearson correlation as 
this study, instead of the rs-FCSM, the highest classification 
accuracy was only 72.2%, the average classification accu-
racy was only 68.4% with a variance of 12.1%. The rs-FCSM 
performed better than conventional FC model in classify 
scores of cognitive scale tests in the healthy aging. Similarly, 
Benesty et al. reported 71.43% accuracy using Pearson cor-
relation coefficients as FC metrics [28], and Goryawala et al. 
[29] found that neuropsychological scores and cortical vol-
umes (temporal, parietal lobe, and cingulate gyrus) could 
distinguish early mild cognitive impairment (EMCI) from 
late mild cognitive impairment (LMCI) with 73.6% accu-
racy. Recently, Zhu et al. entered the FC of the hippocam-
pus as features into a support vector machine and obtained 
a classification accuracy of 81.33% for healthy controls and 
older patients with mild cognitive impairment [30]. Table 3 
compares several cognitive classification methods, and it 

Fig. 4  Difference in whole-brain functional connectivity (FC) between older individuals with excellent and poor cognitive test performance. a 
Average functional connectivity values for the 55 old people with excellent cognitive scores. b Average functional connectivity values for the 43 
old people with poor cognitive scores. c Average functional connectivity values for 90 healthy youth. The functional connectivity values are 
displayed as color-coded matrices in the upper panels and as BrainNet Viewer networks in the below panels. The middle red line in the matrix 
is the self-correlation for each region
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can be seen that the model proposed in this paper has a 
good classification value. Thus, the rs-FCSM achieves bet-
ter classification accuracy among healthy older individuals 
with excellent or poor cognitive ability than current clas-
sification models, which might be potential to replace the 
traditional scale tests and beneficial for senior citizens in 
the modern era [31]. This study is based on resting-state 
fMRI data, which is more friendly to the older compared 
to the task state. Admittedly, it is not easy to obtain fMRI 
measurements for low-income and underdeveloped area 

groups at this stage. However, considering the objectiv-
ity of fMRI in judging the cognitive level of healthy older 
adults and the non-diagnostic nature of this study, based 
on this, we developed a model to explore the functional 

Fig. 5  Six functional biomarkers (ROIs) of cognitive ability in healthy older. a Difference_mean and Sum_std of values of rs-FCSM for the whole 
brain. Regions with top 10% of greatest Difference_mean and Sum_std are respectively shown by green dots and red dots, the others are shown 
by black dots; b ROC curves of ROIs; c ROIs displayed by BrainNet Viewer

Table 1  Validation for ROIs by two sample t-test under 
Bonferroni multiple comparisons

AAL area Significance (p-value)

ParaHippocampal_R (AAL40) 5.9193*10–9

Lingual_L (AAL47) 8.3207*10–8

Occipital_Mid_L (AAL51) 7.2708*10–7

Occipital_Mid_R (AAL52) 9.3708*10–8

Temporal_Mid_R (AAL86) 5.0471*10–7

Temporal_Pole_Mid_L (AAL87) 1.8694*10–6

Table 2  Classification accuracy (CA) tested by 10-fold cross-
validation

N Subjects 
in test 
set

Sensitivity 
(%)

Specificity 
(%)

Accuracy (%)

1 10 80 80 80

2 10 83.33 100 90

3 10 80 100 90

4 10 100 75 90

5 10 66.67 75 70

6 10 100 80 90

7 10 100 100 100

8 10 100 75 90

9 9 80 75 77.78

10 9 80 100 88.89

Mean ± std 87 ± 12.01 86 ± 12.20 86.67 ± 8.43
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differences in distinguishing the brain regions with high 
and low cognitive levels in healthy older adults, and to pro-
vide our own research ideas for the fMRI study. In addition, 
with the advancement of technology and the full popularity 
of MRI medical treatment in the future, it is believed that 
non-invasive diagnosis based on fMRI will be extremely 
convenient.

Limitations
There were some limitations in the data of healthy young 
people selected for modeling in the approach presented in 
this paper. Although, the older adults with different cogni-
tive scores were from the same database, it is ideal that the 
rs-FCSM required all data from same database, including 
same race populations. Despite we tried hard to choose the 
ComBat algorithm for multi-center FC homogenization 
and near homologous race between the aging dataset and 
the youth dataset, the exact computing of the rs-FCSM 
could be affected, leading to be an additional limitation to 
this study. Furthermore, older public database used in this 
study only discloses fMRI data under the AAL template, 
but this template is relatively rough in functional segmen-
tation. In the future, more comprehensive data of linking 
cognitive performance and aging brain will be coming up 
to study the sensitivity of the rs-FCSM to cognitive scores 
of the aging on finely divided functional templates, such as 
Yeo 400 atlas, Power 256 atlas, etc.

Conclusions
The rs-FCSM could extract scientific functional biomarkers 
sensitive to cognitive scores among healthy older individu-
als in the frontal, temporal, and parietal cortices. These bio-
markers could distinguish excellent cognitive ability from 
poor cognitive ability with 86.67% accuracy of machine-
aided classification. Thereby, our work might provide 
objective metrics for replacing the conventional scale tests.
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Table 3  Comparison of other relevant methods with this study

Article Methods CA

Benesty [28] FC 71.43%

Goryawala [29] MRI 73.6%

Zhu [30] SVM 81.33%

Ranran [32] MIC + SVM 80.1%

Ding [33] EEG 80.08%

Jiang [34] EEG 84.5%

Our model rs-fMRI 86.7%
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