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Abstract
Background  To investigate the value of a nomogram model based on the combination of clinical-CT features and 
multiphasic enhanced CT radiomics for the preoperative prediction of the microsatellite instability (MSI) status in 
colorectal cancer (CRC) patients.

Methods  A total of 347 patients with a pathological diagnosis of colorectal adenocarcinoma, including 276 
microsatellite stabilized (MSS) patients and 71 MSI patients (243 training and 104 testing), were included. Univariate 
and multivariate regression analyses were used to identify the clinical-CT features of CRC patients linked with MSI 
status to build a clinical model. Radiomics features were extracted from arterial phase (AP), venous phase (VP), 
and delayed phase (DP) CT images. Different radiomics models for the single phase and multiphase (three-phase 
combination) were developed to determine the optimal phase. A nomogram model that combines clinical-CT 
features and the optimal phasic radscore was also created.

Results  Platelet (PLT), systemic immune inflammation index (SII), tumour location, enhancement pattern, and AP 
contrast ratio (ACR) were independent predictors of MSI status in CRC patients. Among the AP, VP, DP, and three-phase 
combination models, the three-phase combination model was selected as the best radiomics model. The best MSI 
prediction efficacy was demonstrated by the nomogram model built from the combination of clinical-CT features and 
the three-phase combination model, with AUCs of 0.894 and 0.839 in the training and testing datasets, respectively.

Conclusion  The nomogram model based on the combination of clinical-CT features and three-phase combination 
radiomics features can be used as an auxiliary tool for the preoperative prediction of the MSI status in CRC patients.
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Introduction
Colorectal cancer (CRC) is currently the third most 
prevalent malignancy and the second most deadly cancer 
worldwide [1]. Microsatellites (MSs) are DNA sequences 
of a few nucleotides (typically 1–6) in the genome that 
are repeated in tandem [2]. DNA mismatch repair sys-
tems exist in normal organisms, and the most common 
DNA mismatch repair genes are MLH1, MSH2, MSH6, 
and PMS2. When mutations occur in any of the DNA 
mismatch repair genes or when MLH1 promoter hyper-
methylation occurs, this leads to the accumulation of 
erroneous MS sequences, which is called microsatellite 
instability (MSI) [3, 4].

MSI is one of the molecules associated with the onco-
genic pathway of CRC, and it has an incidence of 15% 
[5]. Although the incidence of MSI in CRC is low, it has 
special clinical significance. First, Lynch syndrome can 
be screened for primarily via MSI testing [6, 7]. Second, 
for early-stage CRC, especially in stage II, MSI status is a 
positive prognostic factor [8]. Finally, CRC patients with 
MSI status may benefit from immunotherapy but not 
from 5-FU-based chemotherapy regimens [9, 10]. There-
fore, the detection of MSI status has certain clinical value 
in guiding the diagnosis, treatment and prognosis evalua-
tion of CRC patients.

MSI detection is usually performed by invasive meth-
ods, such as polymerase chain reaction (PCR) and immu-
nohistochemistry (IHC), to obtain pathological tissues. 
These methods are time-consuming and expensive, and 
biopsies are only able to obtain a very small fraction of 
lesions. Thus, it is difficult to adequately demonstrate the 
MS status of the tumour [11]. Therefore, a noninvasive, 
economical preoperative approach is required to predict 
MSI status in CRC patients.

In clinical work, enhanced CT is a frequently employed 
noninvasive examination method to determine the local 
and systemic conditions of CRC patients, which helps in 
disease diagnosis and treatment plan selection. However, 
traditional medical imaging mainly relies on the visual 
perspective to define features [12]. Thus, a large amount 
of image information is lost, and the identification of 
the MSI status of CRC patients remains challenging. In 
contrast, radiomics combines the quantitative analy-
sis of medical images and machine learning methods. 
This approach can deeply mine a significant number of 
image data in medical images that cannot be identified 
by human visual perspective, providing more accurate 
information for medical imaging diagnosis and treatment 
[13–15]. However, radiomics are not foolproof and need 
to be complemented by combining clinical and medical 
image features [12]. Therefore, a comprehensive and effi-
cient prediction model can only be constructed by com-
bining multidimensional information such as radiomics, 
clinical and medical image features. At present, there are 

relatively few reports on the use of CT radiomics to pre-
dict MSI status in CRC patients [16–18]. Furthermore, 
these studies did not include sufficiently comprehensive 
clinical and CT features and only analysed radiomics fea-
tures in the venous phase (VP). Therefore, the aim of this 
study was to build the clinical model, radiomics models, 
and nomogram model to preoperatively predict MSI sta-
tus in CRC patients based on more comprehensive clini-
cal-CT features and multiphasic enhanced CT radiomics.

Materials and methods
Patients
A total of 504 CRC patients who matched the inclusion 
criteria from January 2016 to December 2022 in our 
hospital were initially enrolled. Inclusion criteria: (1) 
pathologically confirmed colorectal adenocarcinoma; (2) 
Philips 256 CT abdominopelvic triphasic CT enhanced 
examination within 2 weeks before surgery; and (3) MSI 
or MSS results tested by IHC. Exclusion criteria: (1) lack 
of clinical data (n = 24); (2) unidentifiable tumour on CT 
images or poor image quality (n = 53); (3) pathologically 
confirmed nonadenocarcinoma or combination of other 
cancers (n = 39); (4) preoperative treatment with any anti-
cancer therapy (radiotherapy, chemotherapy, biotherapy, 
etc.) (n = 30); and (5) complications such as intussus-
ception and intestinal perforation (n = 11). Finally, 347 
patients were enrolled, including 276 MSS patients and 
71 MSI patients. These patients were randomly allocated 
to the training dataset, which had 243 participants, and 
the testing dataset, which had 104 participants. Figure 1 
depicts the patient screening procedure.

Microsatellite instability status assessment
MSI is caused by functional defects in DNA mismatch 
repair proteins (MLH1, MSH2, MSH6, and PMS2), 
and the deletion of DNA mismatch repair proteins was 
observed by IHC. Patients with negative staining for 
one or more of the four mismatch repair proteins were 
assigned to the MSI group, while those with positive 
staining for all four were assigned to the MSS group [19].

Clinical features
Clinical information within 1 week before surgery was 
collected by reviewing electronic cases of CRC patients. 
This information included general information, such as 
age, sex, smoking status, alcohol habits, family history 
of cancer, hypertension, and diabetes. This information 
also included laboratory indices, such as carcinoembry-
onic antigen (CEA), carbohydrate antigen 19 − 9 (CA199), 
white blood cell (WBC), neutrophil (NE), lymphocyte 
(LYM), platelet (PLT), C-reactive protein (CRP), and 
albumin (ALB) levels as well as the calculated neutro-
phil to lymphocyte ratio (NLR = NE/LYM) and systemic 
immune inflammation index [SII = PLT×(NE/LYM)].
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CT image acquisition and analysis
Every patient was examined using a Philips 256 CT scan-
ner. Patients fasted for more than 8 h before the exami-
nation, and a total of approximately 1500 ml of negative 
contrast agent was administered orally approximately 
2  h before the scan. Specific parameters: tube voltage, 
120  kV; automated tube current; slice thickness, 5  mm; 
and matrix, 512 × 512. After the nonenhanced abdomi-
nal CT scan, 80–100 ml of iodine contrast was injected, 
and enhanced scans of the arterial phase (AP), VP, and 
delayed phase (DP) were performed at 25–35 s, 65–80 s, 
and 210 s after contrast administration, respectively.

Features on the CT images were as follows: (1) clini-
cal T (cT) stage and clinical N (cN) stage: according to 
the AJCC 8th edition [20]; (2) tumour location: the right 
colon, including the proximal 2/3 transverse colon, 
ascending colon and caecum, and the left colon or rec-
tum, including the distal 1/3 transverse colon, descend-
ing colon, sigmoid colon and rectum [21]; (3) tumour 
length; (4) maximum tumour diameter; (5) enhancement 
pattern: homogeneous refers to the difference between 
the largest and smallest CT value of the lesion in the VP 
is less than or equal to 10 Hounsfield units (HU), and het-
erogeneous refers to the difference between the largest 
and smallest CT value of the lesion in the VP is greater 
than 10 HU [22]; and (6) CT contrast ratio (CR): ratio of 
the CT value of the lesion to the CT value of the abdomi-
nal aorta or its branches at the same level [23], includ-
ing the plain phase contrast ratio (PCR), AP contrast 
ratio (ACR), VP contrast ratio (VCR) and DP contrast 
ratio (DCR). CT value measurement: Examine the plain 
scan and the triphasic enhanced CT images of AP, VP, 
and DP, and choose the phase with the clearest tumour 
boundary as the baseline for outlining the ROI, avoiding 
the edge of the tumour by about 2 mm [24], avoiding fat, 
gas, intestinal contents, calcification, and so on. The ROI 

of the abdominal aorta or its large branches at the same 
level as the lesion was outlined, avoiding the vessel wall 
and plaque. To guarantee that the size and location of 
the areas are consistent from one phase to the next, the 
ROIs are created via copying and pasting. CT images of 
all patients were analyzed by a gastrointestinal radiolo-
gist with 3 years of experience, in the presence and under 
the guidance of a chief gastrointestinal radiologist with 
25 years of experience, both of whom were unaware of 
the pathologic information of the CRC patients. In case 
of disagreement, negotiation was conducted to reach a 
consensus [25, 26]. Quantitative indicators were all mea-
sured three times and averaged.

Image segmentation [25, 26]
The CT images of AP, VP and DP were imported sequen-
tially into ITK-SNAP software (v3.8.0, http://www.
itksnap.org) in DICOM format for each patient. A gastro-
intestinal radiologist with 3 years of experience outlined 
ROIs layer by layer on the triphasic enhanced CT images, 
which should include haemorrhage and necrotic areas 
and avoid fat, air and intestinal contents. If identifying 
the lesion’s border is challenging, it can be done by vary-
ing the window width and window level, or by doing mul-
tilevel and multidimensional observation. Then, a chief 
gastrointestinal radiologist with 25 years of experience 
reviewed and modified these images and generated a vol-
ume of interest (VOI) for the tumour. In case of disagree-
ment, negotiation was conducted to reach a consensus. 
Neither physician had any knowledge of the pathology 
information of each CRC patient.

Feature extraction and selection
FeAture Explorer (v0.5.5, https://github.com/salan668/
FAE), an open-source radiomics analysis platform written 
in Python 3.7.6 [27], was used to extract the radiomics 

Fig. 1  Patient screening flow chart
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of each patient from 10 image types and 3 different fea-
ture systems. The 10 image types are Original, Wavelet 
Transform, Square, Square Root, Logarithm, Laplacian 
of Gaussian, Gradient, Exponential, Local Binary Pattern 
(2D), and Local Binary Pattern (3D). The three types of 
feature systems are first-order features, shape features, 
and texture features, where texture features include the 
gray-level cooccurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size zone matrix 
(GLSZM), neighbouring gray tone difference matrix 
(NGTDM) and gray-level dependence matrix (GLDM). 
Finally, 1772 radiomics features were extracted from each 
of the AP, VP and DP images.

The above-extracted features were then screened. First, 
the synthetic minority oversampling technique (SMOTE) 
was utilized to correct the effects of the uneven sample 
sizes of the MSI and MSS groups. Second, the Z-score 
was used to normalize the data features. Third, the Pear-
son correlation coefficient (PCC) method was used for 
dimensionality reduction, and redundant features with 
PCC > 0.99 were removed. Fourth, recursive feature elim-
ination (RFE) was used to select features. The goal of RFE 
is to progressively reduce the set of classifier-based fea-
tures, with the range of feature numbers set from 1 to 20 
[27, 28]. Fifth, a logistic regression classifier and fivefold 
cross validation were used.

Model building and analysis
Using univariate and multivariate analyses, clinical-CT 
features associated with MSI status in CRC patients were 
screened out, and a clinical model was built. To deter-
mine the enhanced phase with the best MSI prediction 
performance, AP, VP, DP, and three-phase combination 
models were also built, and linear combination weights 
were calculated to form the radscore. To create a more 
comprehensive prediction model, the screened clinical-
CT features and the best phasic radscore were integrated 
to build a nomogram model. The prediction effective-
ness of each model was evaluated by the area under curve 
(AUC) of the receiver operating characteristic (ROC) 
curve, and the difference in AUC values among the mod-
els was compared using the DeLong test. The calibration 
curve was used to evaluate the agreement between the 
predicted and actual probabilities of MSI status by the 
nomogram, and the Hosmer‒Lemeshow test was used to 
evaluate the goodness of fit of the nomogram. Decision 
curve analysis (DCA) was performed to determine the 
clinical utility of each model by comparing the net ben-
efit at different threshold probabilities. The flow chart of 
radiomics is shown in Supplementary Material Figure S1.

Statistical analysis
SPSS 26.0 and R 4.3.0 were used to conduct the statistical 
analysis. Independent sample t test, the Mann-Whitney 

U test, and the chi-squared test were used to compare 
continuous and categorical variables. In a multivari-
ate binary logistic regression, variables with statistically 
significant univariate analysis were added to identify 
independent risk factors related to MSI status in CRC 
patients. Waterfall plots, nomogram, ROC curves, cali-
bration curves and DCA were plotted and analysed by 
R software. P < 0.05 indicates a statistically significant 
difference.

Results
Clinical features
This study comprised 347 individuals with CRC. Their 
ages ranged from 28 to 90 years, and the mean was 66 
years. There were 200 males and 147 females. The MSI 
group had higher PLT and SII levels than the MSS group 
(P < 0.05). Other clinical features between the MSI and 
MSS groups, including age, sex, smoking, alcohol, family 
history of cancer, hypertension, diabetes, CEA, CA199, 
WBC, NE, LYM, CRP, ALB, and NLR, were not sub-
stantially different (P > 0.05). The incidences of MSI in 
the training and testing datasets were 20.58% (50/243) 
and 20.19% (21/104), respectively, with no significant 
differences in clinical features between the two groups 
(P > 0.05) (Table 1).

CT features
Compared with that in the MSS group, the CRC in the 
MSI group was more prevalent in the right colon, with 
more heterogeneous enhancement and lower PCR, ACR, 
VCR, and DCR (P < 0.05). Other CT features, including 
cT stage, cN stage, tumour length, and maximum tumour 
diameter, did not substantially differ between the MSI 
and MSS groups (P > 0.05). There were no significant dif-
ferences in CT features between the training and testing 
datasets (P > 0.05) (Table 2).

Clinical model building and analysis
The indicators that were statistically significant in the 
univariate regression analysis, including PLT, SII, tumour 
location, enhancement pattern, PCR, ACR, VCR, and 
DCR, were included in the multivariate regression anal-
ysis, and this analysis revealed significantly different 
results for PLT, SII, tumour location, enhancement pat-
tern, and ACR (P < 0.05) (Table 3). We constructed clini-
cal models based on the above five clinical CT features, 
and the AUCs were 0.765 (95% CI: 0.687–0.843) and 
0.783 (95% CI: 0.642–0.923) in the training and testing 
datasets, respectively.

Radiomics model building and analysis
AP, VP, DP, and three-phase combination models were 
constructed by extracting 1772 radiomics features from 
each patient’s AP, VP, and DP images, respectively. 
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Table 1  Analysis of the clinical features of 347 patients with colorectal cancer [median (Q1, Q3) or no. (%)]
MSI(n = 71) MSS(n = 276) P Training(n = 243) Testing(n = 104) P

Age(y) 65.00(57.00,73.00) 66.00(59.00,74.00) 0.566 66.00(60.00,73.00) 64.00(55.25,74.75) 0.250
Sex,n(%) 0.804 0.989
Male 40(56.34) 160(57.97) 140(57.61) 60(57.69)
Female 31(43.66) 116(42.03) 103(42.39) 44(42.31)
Smoking,n(%) 0.117 0.104
Yes 8(11.27) 53(19.20) 48(19.75) 13(12.50)
No 63(88.73) 223(80.80) 195(80.25) 91(87.50)
Alcohol, n(%) 0.516 0.099
Yes 7(9.86) 35(12.68) 34(13.99) 8(7.69)
No 64(90.14) 241(87.32) 209(86.01) 96(92.31)
Family history of cancer, n(%) 0.949 1.000
Yes 2(2.82) 5(1.81) 5(2.06) 2(1.92)
No 69(97.18) 271(98.19) 243(97.94) 104(98.08)
Hypertension, n(%) 0.392 0.103
Yes 38(53.52) 132(47.83) 117(48.15) 44(57.69)
No 33(46.48) 144(52.17) 126(51.85) 60(42.31)
Diabetes, n(%) 0.612 0.603
Yes 12(16.90) 40(14.49) 38(15.64) 14(13.46)
No 59(83.10) 236(85.51) 205(84.36) 90(86.54)
CEA(ng/ml) 3.73(2.15,11.08) 4.23(2.37,16.73) 0.155 3.89(2.25,15.58) 4.57(2.49,12.05) 0.560
CA199(U/ml) 12.59(7.61,25.47) 13.13(7.49,23.19) 0.635 12.80(7.61,23.50) 14.48(6.86,23.19) 0.852
WBC(×109/L) 6.10(5.20,7.30) 6.10(4.90,7.20) 0.535 6.10(5.10,7.20) 5.85(4.83,7.40) 0.648
NE(×109/L) 3.90(2.90,4.80) 3.70(2.80,4.60) 0.221 3.70(2.90,4.60) 3.55(2.80,4.80) 0.751
LYM(×109/L) 1.50(1.10,2.00) 1.50(1.20,1.90) 0.766 1.50(1.20,1.90) 1.50(1.10,1.90) 0.956
PLT(×109/L) 270.00(214.00,301.00) 228.50(188.25,276.75) 0.002 230.00(192.00,280.00) 251.00(190.25,299.75) 0.203
CRP(mg/L) 5.60(5.40,6.00) 5.50(5.00,5.90) 0.085 5.50(5.10,5.90) 5.60(5.10,5.98) 0.416
ALB(g/L) 41.00(38.10,43.90) 41.35(37.90,44.10) 0.836 41.20(37.90,44.10) 41.80(37.90,44.03) 0.935
NLR 2.56(1.72,3.54) 2.43(1.67,3.47) 0.366 2.46(1.69,3.46) 2.46(1.60,3.53) 0.850
SII(×109/L) 630.95(431.95,957.38) 539.02(362.42,816.78) 0.024 570.67(378.00,813.93) 566.59(370.90,938.09) 0.485

Table 2  Analysis of the CT features of 347 patients with colorectal cancer [median (Q1, Q3) or no. (%)]
CT features MSI(n = 71) MSS(n = 276) P Training(n = 243) Testing(n = 104) P
cT-stage, n(%) 0.106 0.096
T1 5(7.04) 7(2.54) 7(2.88) 5(4.80)
T2 4(5.63) 33(11.96) 32(13.17) 5(4.80)
T3 58(81.70) 213(77.17) 187(76.95) 84(80.78)
T4 4(5.63) 23(8.33) 17(7.00) 10(9.62)
cN-stage, n(%) 0.279 0.793
N0 38(53.52) 127(46.01) 118(48.56) 47(45.19)
N1 17(23.94) 60(21.74) 54(22.22) 23(22.12)
N2 16(22.54) 89(32.25) 71(29.22) 34(32.69)
Tumour location, n(%) < 0.001 0.817
Right colon 37(52.11) 80(28.99) 81(33.33) 36(34.62)
Left colon or Rectum 34(47.89) 196(71.01) 162(66.67) 68(65.38)
Tumour length(cm) 46.66(35.27,65.88) 48.06(36.40,62.69) 0.535 48.10(36.78,62.65) 46.33(35.27,63.67) 0.932
Maximum tumour diameter(cm) 18.10(15.08,26.24) 17.69(13.61,24.85) 0.142 17.54(13.67,24.96) 18.38(14.47,25.73) 0.420
Enhancement, n(%) < 0.001 0.118
Homogeneous 40(56.34) 238(86.23) 200(82.30) 78(75.00)
Heterogeneous 31(43.66) 38(13.77) 43(17.70) 26(25.00)
PCR 0.89(0.82,0.96) 0.92(0.84,1.02) 0.009 0.91(0.83,1.02) 0.92(0.84,1.00) 0.630
ACR 0.21(0.16,0.24) 0.23(0.21,0.26) < 0.001 0.23(0.20,0.26) 0.22(0.20,0.25) 0.143
VCR 0.46(0.38,0.50) 0.51(0.47,0.56) < 0.001 0.50(0.45,0.55) 0.51(0.45,0.56) 0.883
DCR 0.64(0.58,0.69) 0.68(0.63,0.73) < 0.001 0.67(0.63,0.72) 0.68(0.60,0.73) 0.854
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Finally, 10 AP, 7 VP, 7 DP, and 12 three-phase combina-
tion radiomics features were retained, respectively. The 
radiomics features screened in each phase are shown in 
Supplementary Material Table S1.

Four radiomics models were constructed, and the 
AUCs of the AP model, VP model, DP model, and three-
phase combination model in the training dataset were 
0.772 (95% CI: 0.701–0.843), 0.722 (95% CI: 0.645–
0.799), 0.750 (95% CI: 0.679–0.821) and 0.827 (95% CI: 
0.763–0.891), respectively. The AUCs in the testing data-
set were 0.760 (95% CI: 0.638–0.881), 0.671 (95% CI: 
0.552–0.790), 0.668 (95% CI: 0.532–0.805), and 0.714 
(95% CI: 0.604–0.825), respectively. In the training data-
set, the three-phase combination model had the highest 
predictive efficacy. Therefore, the three-phase combina-
tion model was ultimately selected as the best radiomics 
model.

Nomogram model building and analysis
The radscore is derived by combining the ten radiomics 
features screened by the optimal phase (three-phase 
combination) with the corresponding weights, as speci-
fied in the formula in Supplementary Material S1. This 
radscore was higher in the MSI group than in the MSS 
group in both the training and testing datasets (P < 0.05) 

(Fig. 2). The radscore and clinical CT features (PLT, SII, 
tumour location, enhancement pattern, and ACR) were 
combined to create a joint model and presented as a 
nomogram (Fig.  3). The results showed that the model 
had the best predictive efficacy, with an AUC of 0.894 
(95% CI: 0.848–0.939) in the training dataset and 0.839 
(95% CI: 0.738–0.940) in the testing dataset. The DeLong 
test showed that in the training dataset, there was a sig-
nificant difference in the AUC of the nomogram model 
compared with the AUC of the AP, VP, DP and clinical 
models (P < 0.05), indicating that the nomogram model 
combining clinical-CT features and three-phase combi-
nation radiomics features could improve the predictive 
efficacy of MSI. The predictive efficacy of all models is 
detailed in Fig. 4; Table 4.

Calibration curves (Fig.  5) indicate good agreement 
between the probability of predicting the MSI and the 
actual probability in the training and testing datasets. 
The Hosmer‒Lemeshow test for the nomogram model 
was not significant (P = 0.155 for the training dataset and 
P = 0.509 for the testing dataset), indicating that it did not 
deviate significantly from the ideal fit.

DCA (Fig. 6) indicated that the nomogram model had 
a higher net benefit in differentiating MSI status in CRC 
patients within a reasonable range of threshold probabili-
ties in both the training and testing datasets.

Discussion
This study investigates the value of the nomogram model 
based on the combination of clinical-CT features and 
multiphasic enhanced CT radiomics for preoperative 
prediction of MSI status in CRC patients. The results 
show that the nomogram model combining clinical-CT 
features and three-phase combination radiomics features 
has better predictive efficacy in both the training and 
testing datasets.

Table 3  Multivariate regression analysis of clinical-CT features
Clinical-CT features OR 95% CI P
PLT,per 100 × 109/L 1.458 1.011–2.103 0.043
SII,per 100 × 109/L 1.051 1.011–2.103 0.034
Tumour location 2.039 1.100-3.778 0.024
Enhancement 2.176 1.079–4.391 0.030
PCR,per 0.1 0.791 0.621–1.006 0.056
ACR,per 0.1 0.394 0.168–0.925 0.032
VCR,per 0.1 0.594 0.332–1.061 0.079
DCR,per 0.1 0.859 0.528–1.395 0.539

Fig. 2  Waterfall plots of the arterial phase radscore for each patient in the training (A) and testing (B) datasets
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The findings of the study demonstrated that among 
the included clinical features, PLT and SII were strongly 
correlated with the MSI status of CRC patients. In addi-
tion to its important function in haemostasis, PLT is an 
important inflammatory indicator [29], and SII is a com-
prehensive indicator based on NE, LYM, and PLT that has 
been proposed in recent years to better reflect the inflam-
matory response status of the body [30]. Chronic inflam-
mation has been shown to be closely related to the key 
aspects of tumour development, recurrence, metastasis 
and immune escape [31, 32], and the inflammation and 
immune level of the body can be reflected by inflamma-
tion indices. Inflammation indices are usually obtained 
through blood routine and blood biochemistry tests, 

which are economical and relatively noninvasive tests 
for CRC patients [33]. The PLT level in the MSI group in 
this study was higher than that in the MSS group, which 
is consistent with the results of previous studies [17, 34]. 
Regarding the relationship between MSI and SII, which 
has not yet been reported, the present study found that 
the MSI group had a higher SII. This finding suggests 
that CRC patients with MSI status probably have more 
intense inflammatory responses. L De Smedt et al. [35] 
supported the view of this paper.

The findings of the study demonstrated that among the 
included CT features, tumour location, enhancement 
pattern, and ACR were strongly correlated with MSI 
status in CRC patients. Lesions with MSI status have a 

Fig. 4  ROC curves of the prediction performance of six models in the training (A) and testing (B) datasets: AP model, VP model, DP model, three-phase 
combination model, clinical model, and nomogram model

 

Fig. 3  Nomogram for preoperative prediction of MSI status, consisting of five clinical-CT features and three-phase combination radscore
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Table 4  Detailed performance of each model in the training and testing datasets
Datasets Models AUC(95% CI) Sensitivity Specificity Accuracy PPV NPV
Training AP model 0.772(0.701–0.843) 0.720 0.756 0.749 0.434 0.912

VP model 0.722(0.645–0.799) 0.680 0.705 0.700 0.374 0.895
DP model 0.750(0.679–0.821) 0.640 0.746 0.724 0.395 0.889
AP + VP + DP model 0.827(0.763–0.891) 0.760 0.798 0.790 0.494 0.928
Clinical model 0.765(0.687–0.843) 0.760 0.684 0.700 0.384 0.917
Nomogram 0.894(0.848–0.939) 0.820 0.819 0.819 0.539 0.946

Testing AP model 0.760(0.638–0.881) 0.810 0.711 0.731 0.415 0.937
VP model 0.671(0.552–0.790) 0.952 0.349 0.471 0.270 0.967
DP model 0.668(0.532–0.805) 0.571 0.783 0.740 0.400 0.878
AP + VP + DP model 0.714(0.604–0.825) 0.857 0.614 0.663 0.360 0.944
Clinical model 0.783(0.642–0.923) 0.762 0.819 0.808 0.516 0.932
Nomogram 0.839(0.738–0.940) 0.868 0.867 0.827 0.560 0.911

AUC, Area under the curve; PPV, Positive predictive value; NPV, Negative predictive value

Fig. 6  Decision curve analysis of each model in the training (A) and testing (B) datasets. The vertical coordinate indicates the net clinical benefit of the 
models, and the horizontal coordinate indicates the predicted threshold probability

 

Fig. 5  Calibration curves of the nomogram model in the training (A) and testing (B) datasets
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greater probability of occurring in the right colon, which 
is consistent with the findings of earlier research [36–38]. 
Currently, studies on the use of enhanced CT features 
for assessing MSI status in CRC patients have not been 
reported. Enhanced CT scanning is based on the forma-
tion of neovascularization of different tumours result-
ing in different haemodynamic changes to qualitatively 
analyse the lesions [39]. The CT value of the lesions is 
influenced by various factors, such as patient physiologi-
cal factors, operator factors, and equipment factors [40]. 
To lessen the impact of these variables on the qualita-
tive diagnosis, this study applies the CR for each period 
to standardize the CT values and more precisely evalu-
ate the lesions. The results of this study revealed that the 
ACR of the MSI group was lower than that of the MSS 
group, and the lesion enhancement was more heteroge-
neous in MSI patients, which may be related to internal 
tumour necrosis and mucus components. The findings of 
Greenson JK et al. [41] support this view.

Previous studies have shown that CT radiomics has 
good predictive efficacy for MSI status in CRC patients. 
For example, Pei et al. [17] developed a combined clin-
ical-VP CT radiomics nomogram model to predict the 
MSI status of CRC patients, and the results showed an 
AUC of 0.74 in the training group and 0.77 in the vali-
dation group. Jennifer S et al. [18] developed a combined 
clinical-VP CT radiomics model to predict MSI status 
in patients with stage II-III CRC. The results showed an 
AUC of 0.80 in the training group and 0.79 in the vali-
dation group. However, there are some limitations in 
these studies. First, only single-phase CT images were 
analysed, which could not reflect the features of dynamic 
changes in the tumour haemodynamics and could not 
comprehensively and holistically reflect the information 
of the tumour on the enhanced images. Second, none of 
these studies analysed enhanced CT features and did not 
combine comprehensive clinical features. Third, no cor-
responding treatment was taken for the imbalance in the 
incidence of MSI and MSS groups. In this study, based on 
triphasic enhanced CT images and comprehensive clini-
cal-CT features, SMOTE was used to address the effect of 
imbalance in data distribution. The results indicated that 
the three-phase combination model outperformed the 
single-phase models, and the final nomogram model of 
the combined clinical-CT features and three-phase com-
bination radiomics features had better predictive efficacy 
than the above mentioned studies, which can help with 
preoperative MSI status prediction in CRC patients.

The following limitations apply to our study. First, this 
study is a single-centre retrospective study. Although the 
nomogram model has good predictive efficacy, further 
validation in large-sample, prospective, and multicentre 
studies is needed. Second, manual segmentation is time-
consuming, labour-intensive, and may be inaccurate due 

to the varying morphology of lesions. Third, the CT fea-
tures analysed in this study, such as cT stage, cN stage, 
tumour length, maximum tumour diameter, enhance-
ment pattern, and CR at each phase, are to some extent 
influenced by the radiologists’ experience and subjective 
factors. Fourth, this study hypothesized a lower ACR of 
lesions in the MSI group than in the MSS group, and the 
more heterogeneous enhancement of lesions in the MSI 
group might be related to components such as internal 
mucus and necrosis of the tumour. However, no further 
study of postoperative pathology was performed.

Conclusion
This study demonstrates the good predictive efficacy of 
the nomogram model based on the combination of clin-
ical-CT features and three-phase combination radiomics 
features, which is important for future clinical work. 
Thus, it can be used as an auxiliary tool for preoperative 
prediction of MSI status, for the development of treat-
ment plans, and for the evaluation of prognosis in CRC 
patients.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12880-024-01252-1.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Acknowledgements
Not applicable.

Author contributions
XLB and QS conducted data processing and statistical analysis, they are 
co-corresponding authors. XLB was a major contributor in writing the 
manuscript. Clinical and imaging data were collected by XLB, QS and MW. XLB, 
QS and HYD contributed to segmenting tumors with software. XXD confirmed 
pathology results. GQC, LYZ and GHF guaranteed the integrity of the study. All 
authors reviewed the manuscript.

Funding
This work was mainly supported by the Key R&D plan of Jiangsu Province 
(Social Development, BE2021652) and the special project of “Technological 
Innovation” project of CNNC Medical Industry Co. Ltd(ZHYLTD2021001).

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
The study was approved by the Ethical Committee of the Second Afliated 
Hospital of Soochow University and the requirement for informed consent 
was waived by the Ethical Committee. The study was performed in 
accordance with the Declaration of Helsinki. All methods were carried out in 
accordance with relevant guidelines and regulations.

https://doi.org/10.1186/s12880-024-01252-1
https://doi.org/10.1186/s12880-024-01252-1


Page 10 of 10Bian et al. BMC Medical Imaging           (2024) 24:77 

Consent for publication
Not applicable.

Received: 31 July 2023 / Accepted: 18 March 2024

References
1.	 Sung H, Ferlay J, Siegel RL, et al. Global Cancer statistics 2020: GLOBOCAN 

estimates of incidence and Mortality Worldwide for 36 cancers in 185 coun-
tries. CA Cancer J Clin. 2021;71:209–49.

2.	 Karran P. Microsatellite instability and DNA mismatch repair in human cancer. 
Semin Cancer Biol. 1996;7:15–24.

3.	 Sinicrope FA, Sargent DJ. Molecular pathways: microsatellite instability in 
colorectal cancer: prognostic, predictive, and therapeutic implications. Clin 
Cancer Res. 2012;18:1506–12.

4.	 Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and 
its role in the management of colorectal cancer. Curr Treat Options Oncol. 
2015;16:30.

5.	 Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenter-
ology. 2010;138:2073–87.

6.	 Lynch HT, de la Chapelle A. Hereditary Colorectal Cancer New Engl J Med. 
2003;348:919–32.

7.	 Lynch HT, Boland CR, Rodriguez-Bigas MA, et al. Who should be sent for 
genetic testing in hereditary colorectal cancer syndromes. J Clin Oncol. 
2007;25:3534–42.

8.	 Merok MA, Ahlquist T, Røyrvik EC, et al. Microsatellite instability has a 
positive prognostic impact on stage II colorectal cancer after complete 
resection: results from a large, consecutive Norwegian series. Ann Oncol. 
2013;24:1274–82.

9.	 Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatel-
lite instability in colorectal cancer: a review. Cancer Treat Rev. 2016;51:19–26.

10.	 Lichtenstern CR, Ngu RK, Shalapour S, et al. Immunotherapy, inflammation 
and colorectal Cancer. Cells. 2020;9:618–618.

11.	 Yan WY, Hu J, Xie L, et al. Prediction of biological behavior and prognosis of 
colorectal cancer patients by tumor MSI/MMR in the Chinese population. 
Onco Targets Ther. 2016;9:7415–24.

12.	 Ji GW, Zhu FP, Xu Q, et al. Radiomic features at contrast-enhanced CT predict 
recurrence in early stage Hepatocellular Carcinoma: a multi-institutional 
study. Radiology. 2020;294:568–79.

13.	 Michele A, Joseph S. Beyond imaging: the promise of radiomics. Phys 
Medica-European J Med Phys. 2017;38:122–39.

14.	 Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: 
clinical challenges and applications. CA Cancer J Clin. 2019;69:127–57.

15.	 Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical 
imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

16.	 Ying M, Pan J, Lu G, et al. Development and validation of a radiomics-based 
nomogram for the preoperative prediction of microsatellite instability in 
colorectal cancer. BMC Cancer. 2022;22:524.

17.	 Pei Q, Yi X, Chen C, et al. Pre-treatment CT-based radiomics nomogram for 
predicting microsatellite instability status in colorectal cancer. Eur Radiol. 
2022;32:714–24.

18.	 Golia Pernicka JS, Gagniere J, Chakraborty J, et al. Radiomics-based prediction 
of microsatellite instability in colorectal cancer at initial computed tomogra-
phy evaluation. Abdom Radiol (NY). 2019;44:3755–63.

19.	 Baretti M, Le DT. DNA mismatch repair in Cancer. Pharmacol Ther. 
2018;189:45–62.

20.	 WEISER M R. AJCC 8th Edition: Colorectal Cancer. Ann Surg Oncol. 
2018;25:1454–5.

21.	 Stintzing S, Tejpar S, Gibbs P, et al. Understanding the role of primary tumour 
localisation in colorectal cancer treatment and outcomes. Eur J Cancer. 
2017;84:69–80.

22.	 Li R, Gan H, Ni S, et al. Differentiation of gastric Schwannoma from gastric 
gastrointestinal stromal Tumor with Dual-Phase contrast-enhanced com-
puted Tomography. J Comput Assist Tomogr. 2019;43:741–6.

23.	 Song C, Shen B, Dong Z, et al. Diameter of Superior rectal vein - CT predictor 
of KRAS Mutation in rectal carcinoma. Cancer Manag Res. 2020;12:10919–28.

24.	 Chen LF, Fu GZ, Huang DP, et al. Value of dual-energy CT-based volumetric 
iodine-uptake in the evaluation of chemotherapy efficacy in advanced 
gastric cancer[J]. Chin J Gastrointest Surg. 2019;22:977–83.

25.	 Jin ZY. Expert consensus on the colorectal cancer annotation of CT 
and MRI(2020) (translation). Chinese Journal of Academic Radiology. 
2021;4:141–149.

26.	 Cui Y, Liu H, Ren J, et al. Development and validation of a MRI-based 
radiomics signature for prediction of KRAS mutation in rectal cancer. Eur 
Radiol. 2020;30:1948–58.

27.	 Song Y, Zhang J, Zhang YD, et al. FeAture Explorer (FAE): a tool for developing 
and comparing radiomics models. PLoS ONE. 2020;15:e0237587.

28.	 Chang Y, Xing H, Shang Y, et al. Preoperative predicting invasiveness of lung 
adenocarcinoma manifesting as ground-glass nodules based on multimodal 
images of dual-layer spectral detector CT radiomics models. J Cancer Res Clin 
Oncol. 2023;149:15425–38.

29.	 Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity 
to infection and cancer. Nat Rev Immunol. 2019;19:747–60.

30.	 Dong M, Shi Y, Yang J, et al. Prognostic and clinicopathological significance of 
systemic immune-inflammation index in colorectal cancer: a meta-analysis. 
Ther Adv Med Oncol. 2020;12:1758835920937425.

31.	 McAllister SS, Weinberg RA. The tumour-induced systemic environment 
as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 
2014;16:717–27.

32.	 Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and 
cancer. Rep Pract Oncol Radiother. 2020;25:422–7.

33.	 Wu Y, Tu C, Shao C. Inflammatory indexes in preoperative blood routine to 
predict early recurrence of hepatocellular carcinoma after curative hepatec-
tomy. BMC Surg. 2021;21:178.

34.	 Climent M, Ryan ÉJ, Stakelum Á, et al. Systemic inflammatory response 
predicts oncological outcomes in patients undergoing elective surgery 
for mismatch repair-deficient colorectal cancer. Int J Colorectal Dis. 
2019;34:1069–78.

35.	 De Smedt L, Lemahieu J, Palmans S, et al. Microsatellite instable vs stable 
colon carcinomas: analysis of tumour heterogeneity, inflammation and 
angiogenesis. Br J Cancer. 2015;113:500–9.

36.	 Wielandt AM, Hurtado C, Moreno CM, et al. Characterization of Chilean 
patients with sporadic colorectal cancer according to the three main carcino-
genic pathways: microsatellite instability, CpG island methylator phenotype 
and chromosomal instability. Tumour Biol. 2020;42:1010428320938492.

37.	 Xiao H, Yoon YS, Hong SM, et al. Poorly differentiated colorectal cancers: 
correlation of microsatellite instability with clinicopathologic features and 
survival. Am J Clin Pathol. 2013;140:341–7.

38.	 Iacopetta B, Grieu F, Amanuel B. Microsatellite instability in colorectal cancer. 
Asia Pac J Clin Oncol. 2010;6:260–9.

39.	 Zou M, Zhao Z, Zhang B, et al. Pulmonary lesions: correlative study of 
dynamic triple-phase enhanced CT perfusion imaging with tumor angiogen-
esis and vascular endothelial growth factor expression. BMC Med Imaging. 
2021;21:158.

40.	 Zhang J, Lefkowitz RA, Ishill NM, et al. Solid renal cortical tumors: differentia-
tion with CT. Radiology. 2007;244:494–504.

41.	 Greenson JK, Bonner JD, Ben-Yzhak O, et al. Phenotype of microsatellite 
unstable colorectal carcinomas: well-differentiated and focally mucinous 
tumors and the absence of dirty necrosis correlate with microsatellite insta-
bility. Am J Surg Pathol. 2003;27:563–70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Preoperative prediction of microsatellite instability status in colorectal cancer based on a multiphasic enhanced CT radiomics nomogram model
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Patients
	﻿Microsatellite instability status assessment
	﻿Clinical features
	﻿CT image acquisition and analysis
	﻿Image segmentation [﻿25﻿, ﻿26﻿]
	﻿Feature extraction and selection
	﻿Model building and analysis
	﻿Statistical analysis

	﻿Results
	﻿CT features
	﻿Clinical model building and analysis
	﻿Radiomics model building and analysis
	﻿Nomogram model building and analysis

	﻿Discussion
	﻿Conclusion
	﻿References


