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Abstract 

Self-supervised pretraining has been observed to be effective at improving feature representations for transfer 
learning, leveraging large amounts of unlabelled data. This review summarizes recent research into its usage in X-ray, 
computed tomography, magnetic resonance, and ultrasound imaging, concentrating on studies that compare 
self-supervised pretraining to fully supervised learning for diagnostic tasks such as classification and segmentation. 
The most pertinent finding is that self-supervised pretraining generally improves downstream task performance 
compared to full supervision, most prominently when unlabelled examples greatly outnumber labelled examples. 
Based on the aggregate evidence, recommendations are provided for practitioners considering using self-supervised 
learning. Motivated by limitations identified in current research, directions and practices for future study are sug-
gested, such as integrating clinical knowledge with theoretically justified self-supervised learning methods, evaluat-
ing on public datasets, growing the modest body of evidence for ultrasound, and characterizing the impact of self-
supervised pretraining on generalization.
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Introduction
Significant advancements in deep computer vision has 
resulted in a surge of interest in applications to medi-
cal imaging. Indeed, an enormous number of publi-
cations have demonstrated the capabilities of deep 
learning methods in approximating diagnostic func-
tions in radiological, histopathological, dermatological, 
and endoscopic imaging. Deep learning has been exten-
sively applied in recent years to diagnostic pattern rec-
ognition tasks such as classification, object detection, 

and segmentation in several modalities of medical 
imaging [1–5].

Of course, methodological advances alone are insuf-
ficient to achieve nontrivial results for deep computer 
vision tasks. Large labelled datasets are the major pre-
condition for success in supervised learning problems. 
Fortunately, these exist some notable examples of large, 
open datasets for medical images that contain expert clas-
sification labels for limited sets of conditions (e.g., CheX-
pert  [6]). Regrettably, large medical imaging datasets 
containing task- or pathology-specific labels for all con-
stituent examples do not exist in abundance  [7]. Moreo-
ver, medical imaging datasets tend to contain far fewer 
examples than the photographic image datasets driv-
ing much of the recent progress in computer vision  [8]. 
Obstacles such as patient privacy concerns, private corpo-
rate interests, and the need for expert labelling, hamper 
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the production and dissemination of such datasets [9, 10]. 
Occasionally, situations arise in which unlabelled data-
sets of medical images are available. Labelling a complete 
dataset requires established expertise, the cost of which 
dwarfs the cost of crowdsourcing labels. Furthermore, 
tasks such as semantic and instance segmentation require 
greater attention to detail, significantly increasing the 
labelling time per example.

Self-supervised learning (SSL) has emerged as a broad 
strategy to learn a machine learning model that pro-
duces feature representations from unlabelled data. It is 
particularly beneficial when only a subset of examples 
in a dataset have associated labels. In brief, a machine 
learning model (typically a deep neural network) is 
trained to optimize a supervised learning objective in 
which the targets can be derived from the inputs them-
selves. In other words, a model is trained to solve a pre-
text task, which is a problem that is solvable using only 
the inputs and that requires no labels. Self-supervised 
pretraining refers to the optimization of a self-super-
vised objective to obtain a model capable of producing 
meaningful feature representations that capture salient 
information available in the inputs. The learned param-
eters of the pretrained model may then be used to ini-
tialize a new model that can be trained to solve a more 
specific supervised learning problem for which labelled 
data is available. Figure  1 portrays an example of the 
steps undertaken to pretrain a model using SSL to learn 

representations of chest X-rays, prior to training a mul-
ticlass chest X-ray classifier.

SSL is naturally suited to facilitate the advancement 
of automated diagnostic tasks with radiological images, 
as vast quantities of historical data are available in pic-
ture archiving and communication systems at health-
care institutions worldwide, but labels may not be 
present. Although accompanying radiological reports 
may exist in the electronic medical record, it is labo-
rious to devise classification labels from unstructured 
text. Furthermore, reports may not explicitly identify 
all relevant negative findings for conditions of inter-
est, opting to omit descriptions of normality. Matters 
are especially complicated in the context of segmen-
tation tasks. Regardless, it is rare to encounter a fully 
labelled retrospectively acquired dataset. It is often 
necessary for experts to label at least a fraction of the 
dataset. Expert labelling may be prohibitively expensive 
in terms of monetary cost and/or time. SSL pretraining 
can therefore materially reduce the burden on experts 
to label entire radiological datasets.

The purpose of this review is to coalesce and assess 
evidence that the use of self-supervised pretraining 
can result in equivalent (and sometimes superior) per-
formance in diagnostic tasks with small fractions of 
labelled radiological data. Concretely, this review offers 
the following:

Fig. 1  Example of a typical SSL workflow, with an application to chest X-ray classification. (1) Self-supervised pretraining: A parameterized model 
gφ(fθ (x)) is trained to solve a pretext task using only the chest X-rays. The labels for the pretext task are determined from the inputs themselves, 
and the model is trained to minimize the pretext objective Lpre . At the end of this step, fθ should output useful feature representations. (2) 
Supervised fine-tuning: Parameterized model qψ(fθ (x)) is trained to solve the supervised learning task of chest X-ray classification using labels 
specific to the classification task. Note that the previously learned fθ is reused for this task, as it produces feature representations specific to chest 
X-rays
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•	 An overview of relevant literature that presents evi-
dence regarding the impact of self-supervised pre-
training for diagnostic tasks in radiological imaging, 
focusing on magnetic resonance imaging (MRI), 
computed tomography (CT), radiography (X-ray), 
and ultrasound (US).

•	 Identification of areas in the literature that warrant 
further investigation

•	 Recommendations for future research directions

The present work is not the first to review self-super-
vised approaches in medical imaging. A 2019 review by 
Xu  [11] and a 2022 survey by Shurrab & Duwairi  [12] 
describe common approaches to self-supervised learn-
ing and provide examples of studies that have applied it 
to medical imaging tasks. A 2023 systematic review by 
Huang et al.  [13] describes the utility of SSL in medical 
image classification. This survey distinguishes itself from 
prior works in that it includes more recent literature and 
its scope is limited to four radiological modalitiesUn-
like  [13], this survey includes applications other than 
classification. Lastly, it addresses the theoretical under-
pinnings of SSL, connecting their relevance to applica-
tions in medical imaging.

The remainder of the review is organized in the follow-
ing manner. First, we describe the literature search meth-
odology that was applied to recover the studies described 
herein. What follows is an abridged introduction to self-
supervised learning. We then present evidence for the 
merits of SSL as reported by a selection of recent stud-
ies – a separate section is dedicated to each of MRI, CT, 
X-ray, and US. Prior to the conclusion, we address gaps 
in the literature and summarize recommendations for 
future studies.

Search methodology
The purpose of this survey is to consolidate and evalu-
ate studies quantifying the benefit of self-supervised pre-
training in the automation of diagnostic tasks concerning 
radiological images. A set of potentially qualifying publi-
cations as of November 2022 was found by searching the 
following four databases: Scopus, IEEE, ACM, and Pub-
Med. Queries were designed to cast a wide net, includ-
ing all studies whose titles, abstracts, keywords, or bodies 
mention medical images, CT, MRI, X-ray, ultrasound and 
self-supervised learning or contrastive learning. As will 
be discussed in Background  section, contrastive learn-
ing is a commonly used pretext task in SSL. Appendix 
A gives the exact queries for each database. The search 
returned a total of 1226 results, which was reduced to 
778 unique studies by removing duplicate and completely 
irrelevant papers.

Exclusion criteria were applied to the results to narrow 
down the body of literature to those assessing the impact 
of self-supervised pretraining. Studies were excluded if 
any of the following conditions were met:

•	 The study was not concerned with the radiological 
modalities within the scope of this survey (i.e., MRI, 
CT, X-ray, US).

•	 SSL objectives were presented in the context of semi-
supervised learning, which is a family of machine 
learning techniques related to SSL. Like SSL, semi-
supervised methods exploit unlabelled data. How-
ever, it is concerned with the simultaneous optimiza-
tion of the supervised learning task of interest and an 
unsupervised objective.

•	 The study was a preprint or had not been published 
in a peer-reviewed periodical at the time of the litera-
ture search.

•	 The study applied self-supervised learning for a diag-
nostic task but did not compare performance on 
their downstream supervised learning task to a base-
line (e.g., weights trained from scratch or initialized 
using weights pretrained on ImageNet [14]).

The result was a collection of 124 studies. Figure 2a visu-
alizes the distribution of these papers by imaging modal-
ity. As shown in the figure, there are considerably less 
self-supervised pretraining publications geared toward 
ultrasound tasks than for X-ray, CT, or MRI. Figure  2b 
compares the number of papers in this survey published 
per year, reflecting the increasing interest and progress in 
SSL over the last couple years.

This survey directly addresses all included studies. We 
focused on studies that concentrate on common down-
stream tasks. Additionally, we attempted to highlight 
studies featuring replicable methods, as indicated by 
evaluation on public datasets and open source availability 
of experiment code.

Background
Preliminaries
In unsupervised representation learning, machine learn-
ing models are trained to produce compact d-dimen-
sional representations of inputs that are useful for some 
task(s). SSL is a form of representation learning in which 
the objective function is formed from a pretext task 
whose solutions are easily obtainable from unlabelled 
examples. SSL distinguishes itself from supervised learn-
ing in that the objective does not depend on labels for 
some specific task. Like unsupervised learning, SSL aims 
to derive compact, low-dimensional representations for 
examples; however, it is distinct in that it involves opti-
mizing supervised learning objectives.
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The goal of SSL is to learn a feature extractor (also 
known as a backbone or encoder) that can extract high-
level representations from examples. The weights of the 
feature extractor may then be applied to subsequent 
supervised learning tasks for which labels are available 
(often referred to as downstream tasks). The weights of 
the feature extractor may be kept stagnant or fine-tuned 
in the downstream learning problem. To gain intuition 
into the advantage of learning representations with SSL, 
consider the following example. Suppose a toddler is 
seeing different kinds of fruits for the first time. With-
out any feedback or external knowledge, they discover 
attributes of the fruits that distinguish them from others, 
such as colour and shape. Later, when they are taught 
to identify fruits by name in preschool, they apply their 
previously acquired knowledge about fruits to help her 
classify them (e.g., limes are green and round). It is likely 
that they have an advantage over classmates who did not 
eat fruit at home.

More concretely, suppose that we have a dataset of 
examples, X  . A pretext task is formulated that is solv-
able with knowledge of the examples. Note that the task 
may be defined for one or more examples. Solutions for 
the pretext task are taken as the labels for a self-super-
vised problem. An objective is defined that appropriately 
measures the performance of a learner at solving the 
pretext task.

In the context of computer vision, a backbone model, 
fθ : R

h×w×c
→ R

d , is defined that maps h× w × c 
images to a d-dimensional representation. fθ is typi-
cally a deep neural network, parameterized by θ , whose 
architecture embodies an inductive bias amenable to 
the equivariance and invariance relationships inherent 
to the dataset, such as a convolutional neural network 
(CNN). The objective is computed from the output of a 

secondary function gφ : R
d
→ R

e , where gφ is a neural 
network with parameter φ . The pretext objective Lpre is 
then optimized to recover optimal weights θ∗ and φ∗.

For the chest X-ray classification example in Fig.  1, 
suppose chest X-ray images are passed to a CNN feature 
extractor fθ . The resulting feature representations h are 
passed to multilayer perceptron gφ , the output of which is 
used to compute Lpre , which quantifies performance on 
the pretext task.

After the objective is optimized, gφ is customar-
ily discarded. The backbone fθ may then be applied for 
a subsequent supervised learning problem, as fθ (x) is a 
nontrivial representation of x . For a supervised learning 
task with examples X ′ (originating from an identical or 
similar distribution as X  ) and corresponding labels Y , 
a new model head qψ : R

d
→ R

dim(y) is initialized. qψ 
receives feature representations h as input. The model 
qψ(fθ (x)) is trained to minimize a loss function with 
respect to the labels. At this stage, θ may be held constant 
or fine-tuned via transfer learning. Broadly, this process 
is referred to as self-supervised pretraining. Note that it 
is possible that the pretrained weights θ may constitute a 
useful initialization for multiple downstream supervised 
learning problems.

SSL approaches
The major difference between various self-supervised 
pretraining methods is the choice of pretext task and its 
optimization. Here we enumerate some broad categories 
of SSL methods. The intention is to provide the reader 
with a high-level understanding of the main approaches 

(1)(θ∗,φ∗) = arg min
θ ,φ

Lpre(gφ(fθ (x)))

Fig. 2  Breakdown of the papers included in this survey by a imaging modality and b year of publication
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to SSL that may be useful when describing specific 
studies in the subsequent sections. These approaches 
are often trialled on natural images first, likely due to 
the high availability of benchmark datasets and broad 
applicability.

Generative methods
Several SSL pretext tasks are built around generating 
samples. The output of gφ is an entire image or a fragment 
of an image. Note that generative SSL methods are not to 
be confused with general generative methods in machine 
learning (e.g. generative adversarial networks  [15], 
denoising diffusion models  [16]), where the focus is on 
image generation and not necessarily on producing a fea-
ture extractor. Generative SSL methods often employ an 
encoder network that learns rich feature representations. 
The feature representations are sent to a secondary net-
work, frequently referred to as a decoder. In a self-super-
vised context, gφ is the decoder and fθ is the encoder, 
which is retained for downstream supervised learning. 
Many generative tasks are reconstructive, in that they 
recover a corrupted version of an image. An example of a 

reconstructive approach to self-supervised learning is the 
denoising autoencoder [17] (Fig. 3a). In the image colour-
ization task, coloured images are generated from grey-
scale images, which is made possible by the availability of 
a dataset of coloured images [18]. Inpainting of redacted 
patches of images is another example of a reconstructive 
pretext task [19] (Fig. 3b).

Predictive methods
Many custom pretext tasks have been proposed for 
computer vision that involve learning a specific trans-
formation applied to images. A stochastic transforma-
tion is applied to each example, and the learner’s task is 
to predict or to undo the transformation. For instance, 
the context prediction task is defined as the problem of 
predicting the relative location of random image patches 
from unlabelled images (Fig. 4a) [20]. In the rotation pre-
diction task, a random rotation is applied to an image 
and the learner must infer which rotation was applied 
(Fig.  4b)  [21]. The jigsaw task is the unscrambling of a 
random permutation of all the rectangular patches in an 
image (Fig. 4c) [22]. Generally, the label is defined as the 

Fig. 3  Examples of generative SSL pretext tasks

Fig. 4  Examples of predictive SSL pretext tasks



Page 6 of 24VanBerlo et al. BMC Medical Imaging           (2024) 24:79 

transformation that was applied to the image. The trans-
formation may be stochastic in that its parameters may 
be sampled from some underlying distribution (e.g., the 
angle of a rotation being sampled from a multinoulli dis-
tribution over predefined angles).

A criticism of transformation prediction methods is 
that they may not be generally applicable to downstream 
tasks because the pretext tasks are formulated using spe-
cialized heuristics [23]. Contrastive learning has evolved 
as a generic approach for learning feature representations 
with fewer assumptions regarding the usefulness of par-
ticular tasks. Framed succinctly, the contrastive learning 
problem is to produce representations that are invariant 
to non-meaningful transformations. In contrastive learn-
ing, gφ(h) is a neural network that outputs vector embed-
dings, which need not have the same dimension as the 
representations h . The goal of contrastive learning is to 
produce embeddings zi that are very close (as measured 
by some distance function, d(zi, zj) ) for positive pairs of 
examples and very far for negative pairs. SimCLR  [23] 
is an example of a contrastive learning SSL method in 
which positive pairs are distorted versions of the same 
image and negative pairs are distorted versions of dis-
tinct images. The weights θ and φ are optimized such that 
the embeddings are close and far for positive and nega-
tive pairs respectively. To produce distorted versions of 
images, a series of data augmentation transformations is 
applied, where the parameters of the transformation are 
sampled from a probability distribution. Common exam-
ples of transformations include affine transformations, 
noise addition, and adjustments to brightness, contrast, 
and hue. Other notable examples of contrastive learning 
in SSL include MoCo [24], and PIRL [25].

A major obstacle in contemporary contrastive learn-
ing approaches is the reliance on vast quantities of nega-
tive pairs, necessitating large batch sizes  [26]. Several 
recent publications have focused on approaches relying 
only on positive pairs, collectively referred to as noncon-
trastive learning (Fig.  5). Different transformations are 

applied to the same image to produce multiple views. fθ 
and gφ are optimized to produce embeddings that are 
robust to the possible views entailed by the transforma-
tion distribution, through the minimization of distance 
between the embeddings of positive pairs. Various strat-
egies have been devised to avoid the problem of infor-
mation collapse, where models learn the trivial solution 
of indiscriminately predicting embeddings zero vec-
tors. Examples of methods that have reported results 
comparable or superior to contrastive learning include 
BYOL [27], Barlow Twins [26], and VICReg [28].

Theoretical support
Until recently, SSL publications were focused primar-
ily on introducing novel methods guided by intuitions. 
Some researchers have since attempted to explore the 
properties of SSL pretraining to better understand why 
they deliver such benefits and to ascertain conditions 
under which they will succeed.

Efforts in attempting to understanding the efficacy 
of optimizing performance on pretext tasks in learning 
downstream tasks are growing. Lee et  al.  [29] provided 
guarantees for the improved sample efficiency of pre-
training with a reconstructive pretext task, in scenarios 
where the inputs and pretext target are conditionally 
independent of the labels and a latent variable. Dropping 
the conditional independence assumption, HaoChen 
et  al.  [30] defined a contrastive loss based on spectral 
decomposition and derived performance guarantees for 
linear classifiers trained on the feature representations 
from the pretraining phase. Most recently, Balestriero 
& LeCun  [31] developed an amalgamated lens through 
which contemporary contrastive and noncontrastive 
approaches may be viewed, based on spectral analy-
sis. They demonstrated that a selection of SSL methods 
(including Barlow Twins  [26], VICReg  [28], and Sim-
CLR  [23]) are optimal choices for solving downstream 
tasks as long as the relation between labels is included in 
the relationship between positive pairs [31]. Practitioners 

Fig. 5  A depiction of the forward pass for a positive pair in a standard noncontrastive pretext task. An image is subject to stochastic data 
transformations twice, producing distorted views xa and xb , which are passed through the feature extractor fθ to yield feature representations 
ha and hb . The projector gφ transforms ha and hb into embeddings za and zb respectively. Typically, the objective L is optimized to maximize 
the similarity of za and zb
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in all domains of computer vision are therefore encour-
aged to ensure that their choice of pretext task aligns 
appropriately with the label distribution. Those apply-
ing SSL pretraining for radiological imaging tasks should 
consider these results when selecting a pretext task.

Applications In radiograph imaging
The medical imaging machine learning community has 
extensively reported on automatic interpretation of 
radiographs (X-rays). A large fraction of the effort has 
focused on interpretation of chest X-rays (CXR). There 
exists an overwhelming volume of literature describ-
ing the use of deep neural networks for CXR classifica-
tion tasks. A major enabling force for this work has been 
the availability of large, publicly available, labelled data-
sets. Perhaps unsurprisingly, a flurry of studies exploring 
the use of self-supervised pretraining for CXR analy-
sis followed. Despite the prevalence of open datasets, it 
remains difficult to directly compare publications, since 
pretraining and evaluation protocols differ. Here we sum-
marize the results of such publications to understand the 
impact of SSL.

Chest X‑ray diagnostic tasks
Evidence has been presented in favour of self-super-
vised pretraining for chest X-rays, with reported 
benefits ranging from improved performance, label effi-
ciency, and robustness to external data distributions. 
Many studies focus on the problem of identifying com-
mon respiratory conditions in CXR for which labels are 
available in large public datasets. A substantial fraction 
of publications focus on identifying COVID-19 in CXR, 
which is likely due to the co-occurrence of the COVID-
19 pandemic and the escalation of SSL popularity.

Contrastive learning approaches have been extensively 
studied in the context of CXR classification. In 2020, 

Zhou et al. [32] introduced C2L, a joint embedding con-
trastive learning approach that employs a batch-wise 
mixup operation and a teacher network with momentum 
updates. Pretraining was conducted on a constellation of 
publicly available datasets. When fine-tuning and evalu-
ating on Chest X-ray14  [33], CheXpert  [6], and 
RSNA Pneumonia  [34], C2L outperforms supervised 
models pretrained on ImageNet and self-supervised 
models pretrained with MoCo  [24]. Other variants of 
MoCo have also exhibited improvement over fully super-
vised learning for CXR classification  [35–38]. Table  1 
provides average class-wise area under the receiver oper-
ating characteristic curve (AUC) reported by multiple 
studies for the official Chest X-ray14 test set after 
pretraining and training on the training set.

Azizi et  al.  [43] conducted a thorough study into the 
efficacy of SSL pretraining for CXR classification using 
a variant of SimCLR  [23], reporting improvments in 
mean AUC of over 0.01 when pretrained on CheXpert, 
as compared to fully supervised models. The authors’ 
approach, named Multi-Instance Contrastive Learning, 
generalizes positive pairs to include CXRs of the same 
patient case, thereby exploiting information already 
available in the dataset to complicate the pretext task. 
Valuable insights were derived from their investigations. 
Notably, the authors found that the best-performing 
strategy was to initialize the weights of feature extractors 
with ImageNet-pretrained weights prior to conduct-
ing pretraining. Experiments also established that SSL-
pretrained models outperformed fully supervised models 
when evaluated on Chest X-ray14, an external data-
set. Other studies have reported that SimCLR pretraining 
(and variants) yield improvements in CXR classifica-
tion [44, 45] and CXR object detection [46]. Several other 
publications report improvements in performance on 
downstream tasks using customized contrastive learning 
approaches for CXR diagnostic tasks [40, 47–52]

Table 1  A comparison of SSL pretraining studies that investigated chest X-ray classification using the Chest X-ray14 dataset for 
pretraining, training, and testing using the official splits. The table gives class-wise average test AUC as reported by the authors, when 
training using all available labels

Method Initialization

First Author [ref] Identifier Extractor Random ImageNet SSL

Zhou [32] C2L ResNet-18 - 0.8150 0.8350

Zhou [32] C2L DenseNet-121 - 0.8290 0.8440

Ma [39] SimMIM ViT-B 0.7169 - 0.7955

Ma [39] SimMIM Swin-B 0.7704 - 0.8195

Liu [40] S2MTS2 DenseNet-121 - - 0.8250

Haghighi [41] DiRA ResNet-50 0.8031 0.8170 0.8112

Pang [42] POPAR Swin-B 0.7429 0.8132 0.8181
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Noncontrastive approaches have also been explored for 
CXR diagnostic tasks. Nguyen  et al.  [53] applied BYOL 
to pretrain CXR classifiers using the ChestMNIST and 
PneumoniaMNIST datasets (originating from MedM-
NIST  [54], achieving significantly higher AUC on the 
downstream binary classification tasks than supervised 
models initialized randomly or with ImageNet. Mon-
dal et al. [55] also witnessed improvement of COVID-19 
classification on the COVIDx CXR-2 dataset [56] when 
pretraining on CheXpert using BYOL.

Alternative pretext tasks have also yielded improve-
ments in CXR tasks. Pang et  al.  [42] described the use 
of patch de-shuffling and recovery for pretraining vision 
transformers, demonstrating superior performance 
compared against fully supervised learning alone. Ma 
et  al.  [39] demonstrated the benefit of masked image 
modelling for pretraining vision transformers for various 
CXR tasks. Haghighi et  al.  [41] proposed DiRA, which 
combines discriminative methods (namely, SimSiam 
[57], MoCo  [24], and Barlow Twins  [26]), restoration of 
distorted images, and adversarial training into a compos-
ite pretext task. Improvements over supervised training 
were not observed when fine-tuning on the same data-
set that was used for pretraining; however, statistically 
significant improvements were noted when the pretrain-
ing dataset did not match the dataset in the downstream 
task. Interestingly, the method outperforms each of Sim-
Siam, MoCo, and Barlow Twins alone, indicating the 
possible value of composite pretext tasks. Other pretext 
tasks investigated for CXR classification include recon-
struction of original images after transformation  [58] 
or distortions and/or masking  [59], data augmentation 
prediction  [60], and predicting pseudo-labels generated 
using sample decomposition [61].

Multi-modal pretext tasks have also been explored 
for CXR analysis. Some public CXR datasets contain 
accompanying textual reports, which can be exploited 
to produce rich feature representations that align with 
physician impressions. For instance, Ji et  al.  [62] pre-
trained a network that learns similar representations for 
paired CXRs and reports. Müller et al. [63] demonstrate 
that contrastive pretraining that maximizes similarity 
between CXRs and reports improves performance on 
downstream CXR object detection and segmentation 
tasks on multiple public datasets, compared with image-
only pretraining or fully supervised learning. In a similar 
approach, Tiu et  al.  [64] maximized the cosine similar-
ity of paired CXR images and “Impressions” section of 
reports from the MIMIC-CXR dataset. In lieu of fine-tun-
ing, the authors evaluated the trained vision transformer 
by providing textual prompts containing the label and 
taking the maximum of the logits (e.g., “pneumothorax" 

and “no pneumothorax") to determine the presence or 
absence of conditions. This zero-shot learning approach 
nearly matched fully supervised approaches’ perfor-
mance. The success of multi-modal schemes is made 
possible by datasets where physician reports accompany 
images, such as MIMIC-CXR [65].

Breast cancer identification
Another major diagnostic task for which many deep 
learning solutions have been proposed is the identifica-
tion of anomalies seen on mammograms that could be 
cancerous. Truong et  al.  [66] observed that pretraining 
to solve the jigsaw pretext task improved prediction of 
malignant breast lesions when only a quarter of labels 
are available. You et al. [67] demonstrated that a contras-
tive learning pretext task outperforms the baseline. The 
pretext task was unique in that it considered multiple 
views of the same breast as positive pairs. Treating bilat-
eral mammograms as a positive pair improved the per-
formance of a breast cancer screening model [68]. Finally, 
BYOL  [27] pretraining was shown to improve breast 
tumour segmentation [69]. In contrast with CXR studies, 
mammogram studies have no publicly available data, lim-
iting the replicability of their results.

Oral radiographs
Taleb et al.  [70] investigated the utility of SimCLR, Bar-
low Twins, and BYOL for pretraining a CNN to detect 
dental caries, boosting sensitivity by up to 6% and outper-
forming humans when fine-tuned using only 152 images. 
Hu et al. observed that pretraining using a reconstruction 
pretext task improves downstream classification and seg-
mentation of jaw tumours and cysts.

Applications in computed tomography
Deep computer vision has been heavily drawn upon for 
automated CT analysis. CT scans are volumetric scans; 
as a result, 3D CNNs are often leveraged. 2D CNNs are 
also applied for problems where a single saggital, coro-
nal, or axial image is sufficient for the target task. Vision 
transformers are increasingly being studied as well. Seg-
mentation of organs and lesions are common examples of 
machine learning tasks in CT. There are two major types 
of segmentation tasks: semantic segmentation consists 
of labelling each pixel in an image according to the class 
to which it belongs, and instance segmentation involves 
identifying distinct objects in an image and designating 
its consituent pixels. Semantic and instance segmenta-
tion tasks require greatly increased labelling time com-
pared to classification tasks. Evidence for improved label 
efficiency resulting from SSL pretraining underlines 
its value as a cost reduction strategy. In this section, we 
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explore the impact of SSL pretraining for CT, categorized 
by application.

Lung nodule detection & segmentation
The LIDC-IDRI database is a large, labelled, public col-
lection of CT scans with lung nodule annotations and 
segmentation masks [71]. It comprised the dataset for the 
LUNA2016 challenge [72], which was an open competi-
tion aimed at finding machine learning solutions to lung 
cancer screening. It became a common CT computer 
vision benchmark, and many SSL studies have utilized it.

Referenced by multiple succeeding publications, 
Models Genesis  [73] devised a restorative approach 
for pretraining on subvolumes of 3D medical images. 
The approach involved applying transformations such 
as nonlinear translation, pixel shuffling, cropping, and 
masking to the subvolume. An encoder-decoder CNN 
is pretrained to restore the subvolumes. The encoder is 
reused for downstream classification tasks, while the 
entire pretrained encoder-decoder is used for down-
stream segmentation tasks. The pretrained models are 
available upon request, strengthening the replicability of 
their results. Building on Models Genesis, the Semantic 
Genesis  [74] approach adds a classification loss to the 
reconstruction loss. The classification task is to predict 
which class a subregion belongs to, where the classes 
are constructed for clusters in the latent space of a pre-
trained autoencoder, which the authors claim contain 
rich semantic features. The Parts2Whole [75] pretext task 
involves reconstructing a CT volume from a random sub-
volume. Since the above three methods were tested on 
the same LUNDA2016 splits, they can be directly com-
pared (see Table  2). For 3D volume inputs, the above 
methods are superior to training a lung nodule detec-
tor from scratch. However, 2D slice-based models pre-
trained with Models Genesis or Semantic Genesis do 
not outperform fully supervised models initialized with 
ImageNet-pretrained weights. Other SSL approaches 
that report improvement over training from scratch have 
been reported for this problem, but are not directly com-
parable due to having been trained and/or evaluated on 
different subsets of LIDC-IDRI  [76–80]. Several of the 
aforementioned studies have also observed increase in 
performance for lung nodule segmentation on [71] when 
pretraining using their own or preceding SSL meth-
ods [73–75, 80].

Pulmonary embolism detection & segmentation
Constructed from the private dataset used by Tajbakhsh 
et  al.  [81], ECC is a private benchmark that contains 
chest CT scans, along with labels that differentiate true 

pulmonary emboli from false positives. Models Gen-
esis [73] and Parts2Whole [75] both report a substantial 
improvement over training 3-dimensional (3D) CNNs 
from scratch, with Models Genesis achieving slightly 
higher test AUC than Parts2Whole in a direct compari-
son. Once again, 2D CNNs pretrained with Models Gen-
esis outperform training from scratch, but do not clearly 
outperform models initialized with ImageNet-pre-
trained weights. Redesigning conventional discriminative 
pretext tasks (e.g., jigsaw, rotation) to include reconstruc-
tive and adversarial regularizers, Guo et al.  [80] observe 
consistent improvement on ECC using all pretext tasks. It 
is unclear how the authors of the above studies procured 
the original private dataset first used in [81].
RSNA-PE is a public dataset containing pulmonary 

embolism labels for chest CT examinations. Islam 
et  al.  [82] pretrained various 2D CNN architectures on 
ImageNet using an assortment of previously proposed 
SSL methods, finding that downstream performance 
on the RSNA-PE test set improved for half of the self-
supervised methods studied, compared to initialization 
with ImageNet-pretrained weights. Their mixed results 
are unsurprising, considering that they did not pretrain 
using CT data. Ma et  al. pretrained vision transformers 
on RSNA-PE using SimMIM [83], a masked image mod-
elling pretext task, observing a statistically significant 
improvement in test AUC.

Cerebral hemorrhage detection
An assortment of CT classification tasks have benefit-
ted from self-supervised pretraining. Zhuang et  al.  [84] 
trained a 3D CNN classifier to detect cerebral hemor-
rhage, applying a custom pretext task they playfully liken 
to solving a Rubik’s cube. The pretext task was to predict 

Table 2  A comparison of SSL pretraining studies for 2D and 3D 
CNNs that investigated lung nodule detection using the LIDC-
IDRI dataset and the LUNA 2016 splits. The table gives test 
AUC as reported by the authors

a Values were estimated via visual inspection, since results were reported in a 
chart

Method Initialization

First Author [ref] Identifier Random ImageNet SSL

Zhou [73] Models Genesis 
(2D)

0.9603 0.9779 0.9745

Models Genesis 
(3D)

0.9603 - 0.9834

Haghighi [74] Semantic Genesis 
(2D)a

0.9425 0.9750 0.9750

Semantic Genesis 
(3D)

0.9425 - 0.9847

Feng [75] Parts2Whole (3D) 0.9425 - 0.9867
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the random permutation and rotation applied to the 8 
subvolumes of the cuboid input. Their custom pretrain-
ing resulted in 11.2% higher accuracy than training from 
scratch. Subsequent work modified the task by randomly 
masking subvolumes, adding a prediction head to classify 
the masking pattern applied [85]. The change resulted in 
a 1% improvement in accuracy over their previous study. 
However, the accuracy is lower than in the first study, 
raising the question of whether the same train/test parti-
tions were applied. Further building on this work, Zhu et 
al. [86] form an aggregative pretext task that solves mul-
tiple proxy tasks, including their prior Rubik’s cube 
method. The pretext tasks are iteratively added after eval-
uating fine-tuning experiments, and it is unclear if the 
authors refer to test or training performance. They report 
improvements over training from scratch using all proxy 
tasks studied, the greatest accuracy boost being 17.22%.

COVID‑19 diagnosis
As in CXR applications, there exist multiple applica-
tions to COVID-19 diagnosis in CT. Early in the pan-
demic, Li et al. [87] extend their previous work (Rubik’s 
cube, introduced above in Cerebral hemorrhage detec-
tion  section) by randomly masking subvolumes and 
predicting the mask. It is unclear how this method dif-
fers from the masking task delineated in [85] – in fact, 
the paragraphs describing the masking pretext task are 
nearly identical in [85] and [87]. The authors report an 
increase in precision but decrease in recall, compared to 
training from scratch. Interestingly, Ewen & Khan  [88] 
achieve better performance on the public COVID-CT 
dataset  [89] by employing a seemingly trivial pretext 
task of predicting whether a CT scan has been horizon-
tally reflected across the saggital plane. Lu & Dai  [90] 
conducted two rounds of contrastive pretraining using 
MoCo – one on the LUNA2016 [72] lung nodule analy-
sis challenge dataset and a second on an expanded ver-
sion of COVID-CT. When evaluating on the COVID-CT 
test set, they observed performance improvement com-
pared to ImageNet pretraining. Hochberg et  al.  [91] 
pretrained a StyleGAN and used the convolutional dis-
criminator to initialize a CNN for fine-tuning, observ-
ing an improvement over both training from scratch 
and pretraining with MoCo for COVID-19 detection. 
Focusing instead on vision transformers, Gai et al.  [79] 
found that pretraining with DINO  [92] substantially 
improved the AUC of a COVID-19 classifier on the 
public COVID-CTset [93] dataset.

Moving beyond classification, Gao et  al.  [94] found 
that pretraining using reconstruction or denoising tasks 
improved the Dice score of a model trained to segment 
COVID-19 lesions on CT images. Since their pretext 
tasks were generative, they were able to use the weights 

of both the encoder and decoder to initialize their down-
stream model. However, their method requires a separate 
diagnostic procedure, since it was trained on a private 
dataset consisting only of CT examinations from patients 
with COVID-19.

Organ & tumour segmentation
Multiple studies report results for pancreatic tumour seg-
mentation on a 4-fold cross validation on the public NIH 
Pancreas-CT dataset  [95]. Custom pretext tasks for 
this problem include reconstruction after shuffling CT 
slices [96], reconstruction of scrambled subvolumes [97], 
and contrastive learning using inter- and intra-case pair-
wise relationships [98]. Table 3 compares results reported 
by these studies. [99] and [100] report improved seg-
mentation of pancreatic tumours in the public MSD data-
set [101], compared to training from scratch.

The LiTS2017 dataset is a publicly available bench-
mark for liver tumour segmentation  [102]. Multiple 
studies have utilized it to trial their SSL approaches, 
including the following aforementioned works: Mod-
els Genesis  [73], Parts2Whole  [75], United  [80], and 
self-supervised StyleGAN  [91]. Table  4 compares the 
intersection over union (IoU) reported by the first three 
studies – [91] formulates the LiTS2017 benchmark 
as a classification task and observed an improvement 
in AUC when pretraining with their StyleGAN-based 
approach. Table  4 gives strong evidence in favour of 
pretraining 3D CNNs for liver tumour segmentation. 
However, once again the 2D CNNs pretrained using 
Models Genesis on LUNA2016 were not superior to 
fully supervised 2D CNNs initialized with ImageNet-
pretrained weights.

The BTCV benchmark contains abdominal CT scans 
with segmentation labels for 13 abdominal organs [103]. 
Tang et  al.  [104] pretrained vision transformers using a 
composite loss with reconstructive, contrastive, and rota-
tion classification terms, following random masking and 
rotation of CT volumes. They observed that the combi-
nation of all regularizers was superior to a subset of them 
or training from scratch. Jiang et al. [105] applied masked 
image modelling and self distillation to train vision 

Table 3  A comparison of SSL pretraining studies for 
segmentation in NIH Pancreas-CT  [95]. The mean Dice 
score on the standard 4-fold cross validation is reported

Method Initialization

First Author [ref] Identifier Random SSL

Zheng [96] Slice Shuffle 0.8569 0.8621

Tao [97] Rubik’s cube++ 0.8209 0.8408

Yang [98] VoxSeP (3D) 0.8353 0.8571
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transformers, evaluating on BTCV. Table  5 compares 
SSL pretraining approaches that evaluate on the expan-
sive BTCV benchmark. In all cases, pretraining appears to 
outperform training from scratch by a slim margin.

Zheng et  al.  [106] trialled a different composite loss 
for a hierarchical pretext task. They pretrained using 
multiple datasets, formulating classification losses for 
contrastive learning, task prediction, and group predic-
tion (where a group is a subset of anatomically similar 
datasets), along with a reconstruction loss. They argued 
that the use of these regularizers would facilitate the 
integration of hierarchical knowledge embodied by the 
relationship of the datasets to one another into the fea-
ture extractor. Through ablation studies, they found that 
all components of the regularizer led to the best perfor-
mance and that their approach was superior to a stand-
ard encoder-decoder architecture.

Lastly, multiple studies have observed improvement for 
self-supervised pretraining for the task of organ-at-risk 
segmentation, which plays a vital role in radiotherapy. 
Pretext tasks included multi-view momentum contras-
tive learning  [107], predicting inter-slice distance  [108], 
and an extension of Models Genesis with patch swap-
ping [109]. However, the experimental validity of [107] is 
severely limited because the test set was included in the 
dataset used for pretraining.

Other CT diagnostic tasks
A plethora of studies investigate self-supervised pretrain-
ing for a variety of diagnostic tasks on CT, demonstrating 

its merit. Examples of other tasks explored include kid-
ney tumour classification (with the public KiTS19 data-
set [110]) [111], liver lesion classification [112, 113], renal 
cell carcinoma grading  [114], grading of non-alcoholic 
fatty liver disease [115], object detection for lesions [116] 
and organs  [117], coronary vessel segmentation  [118], 
whole heart segmentation (with the public WHS-CT data-
set  [119])  [120], abdominal muscle segmentation  [121], 
and pneumothorax segmentation [122].

Applications in magnetic resonance imaging
As another 3D modality, MR examinations are cumber-
some to segment. Unsurprisingly, there exist several 
studies that have leveraged self-supervised pretraining to 
derive value from unlabelled MRI data. Here we enumer-
ate and evaluate evidence regarding the effect of pretrain-
ing for diagnostic tasks with MRI.

Brain MRI diagnostic tasks
Brain tumour segmentation is a frequently studied down-
stream task for which open datasets exist. The BraTS 
challenge [123] is a common benchmark for multi-modal 
MRI segmentation. It contains anatomically aligned T1, 
contrast T1, T2, and FLAIR brain MR scans, along with 
ground truth segmentation labels for brain tumours. The 
BraTS dataset has been updated multiple times, and is 
often referred to in conjunction with the year the chal-
lenge was held. Several reconstructive pretext tasks have 
been proposed for this problem. Chen et al. [117] adopted 
a reconstructive task, corrupting MRI slices by swapping 
locations of square patches of pixels. They observed an 
improvement in nearly all performance metrics when 
using 25% and 50% of the dataset. However, they did not 
perform a comparison using all of the available training 
labels. Kayal et  al.  [124] presented an inpainting pre-
text task where 3D supervoxels were redacted from the 
volume. Their 3D CNN significantly outperformed ran-
domly initialized baselines when pretrained using their 
self-supervised objective, even when all training labels 
were included. Expanding on the jigsaw pretext task, 
Taleb et  al.  [125] demonstrated that including multiple 
MRI modalities in the pretraining phase was an improve-
ment from single-modality pretraining and training from 
scratch. Since BraTS is multi-modal, it is unsurprising 
that representations from a single-modality pretrained 
network would trail multi-modality pretraining. They 
also applied generative methods to produce patches for 
underrepresented modalities. The patches used to con-
struct the jigsaw puzzles were composed of segments 
from different modalities. In an effort to improve fea-
ture representations for boundary regions (and therefore 
downstream segmentation quality), Huang et  al.  [126] 

Table 4  A comparison of SSL pretraining studies for liver tumour 
segmentation using 3D CNNs on the LiTS2017 benchmark. We 
display the intersection over union (IoU) reported by each study

Method Initialization

First Author [ref] Identifier Random SSL

Zhou [73] Models Genesis (3D) 0.7976 0.8510

Feng [75] Parts2Whole 0.7782 0.8670

Guo [80] United 0.7782 0.8653

Table 5  A comparison of SSL pretraining studies for the BTCV 
benchmark. We display the average Dice score across the BTCV 
tasks reported by each study

Method Initialization

First Author [ref] Identifier Random SSL

Yang [98] VoxSeP 0.8428 0.8601

Tang [104] Swin UNETR 0.8343 0.8472

Jiang [105] SMIT 0.8500 0.8778
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adopted a standard cuboid patch masking reconstructive 
task using a vision transformer, but applied a weighting 
factor to voxels belonging to regions where the inten-
sity is rapidly changing. They also applied a symmetric 
position encoding that ensured equivalence of position 
encoding for corresponding left and right sides of the 
brain. An ablation study highlighted the merit of both 
of these improvements, evaluating on BraTS 2021. 
Unfortunately, it is difficult to compare the results high-
lighted by the aforementioned techniques because they 
were evaluated on different editions of BraTS.

A substantial number of studies have focused on 
using self-supervised pretraining for the detection of 
psychiatric diseases. Several studies have utilized the 
ADNI  [127] and OASIS-3  [128] datasets to develop 
classifiers that can detect brain MRI scans of patients 
with Alzheimer’s disease (AD). Mahmood et  al. devel-
oped 1D CNNs on time courses of resting state fMRI 
examinations to detect AD, schizophrenia, and 
autism  [129]. They pretrained using a contrastive pre-
text task where the pairwise relationship consisted of 
a fragment of and the entirety of a time course, which 
improved AUC for all three classifiers. Evaluating on 
OASIS-3  [128], Fedorov  et al.  [130, 131] proposed 
contrastive pretraining where positive pairs con-
sisted of paired fMRI and T1 MRI frames. The results 
are mixed, with fully supervised models outperform-
ing pretrained models for T1 volumes and vice versa 
for fMRI volumes, for the task of AD detection. Lev-
eraging the multiple examples per patient available in 
ADNI, Zhao et  al.  [132] suggested a pretext task that 
combines a basic autoencoder with mean squared 
error with a regularizer intended to enforce direction-
ality in the latent space for representations of volumes 
from the same patient taken at two points in time. The 
regularizer maximizes the cosine between the differ-
ence between the representations of paired newer and 
older examples and a constant vector, τ . The idea is to 
learn representations such that adding a scalar multiple 
of τ corresponds to an increase in brain age. Decoded 
MRI examples that varied along τ indicated morpho-
logical differences associated with increased brain age. 
Lastly, pretrained models performed better than those 
initialized randomly. Expanding on this approach, these 
authors proposed a pretext task that clusters exami-
nations with similar brain age, while still enforcing a 
direction of increasing brain age within neighbour-
hoods  [133]. Their approach improved test AUC by 
0.076 compared to their previous work. Dufumier  et 
al.  [134] report an improvement on AD detection in 
ADNI over full supervised learning, pretraining with 
Models Genesis  [73], and SimCLR [23] when incorpo-
rating a weight into the standard contrastive objective 

corresponding to the difference in a continuous meta-
variable, such as patient age. Other pretexts that have 
demonstrated improved performance in AD detection 
include contrastive learning with positive pairs com-
posed from different orthogonal slice views and varia-
ble-length volumes [135], and positive pairs composed 
by pasting anatomically bounded components of one 
image onto another [136]. Moving the focus away from 
pathology, Osin  et al.  [137] were able to train a linear 
classifier using representations provided by a feature 
extractor pretrained to predict next-frame amygdala 
activity on fMRI. The classifier performed better than 
a CNN baseline at predicting demographic traits (e.g., 
age) and psychiatric traits according to clinical ques-
tionnaires (e.g., trait anxiety).

SSL has also proved useful for automatic white mat-
ter segmentation. In 2020, Lu et al.  [138] devised a pre-
text task for white matter segmentation on diffusion 
MRI (dMRI) images from the openly available Human 
Connectome Project  [139] that involved predict-
ing density maps of white matter fiber streamlines. The 
labels for this pretext task were generated by applying a 
previously proposed tractography algorithm and produc-
ing a density map by aggregating the number of stream-
lines intersecting each voxel. After fine-tuning, the Dice 
score of the pretrained model was 0.137 greater than 
that of randomly initialized model. The following year, 
Lu et al.  [140] extended this work by introducing a sec-
ond pretext task that involved segmenting white mat-
ter based on labels computed using a registration-based 
algorithm available in a separate software package. They 
optimized the feature extractor on the first and then sec-
ond pretext task (i.e., sequentially). Models pretrained 
using either or both of the pretext tasks outperformed 
the baseline. Interestingly, the authors did not compare 
sequential pretraining with simultaneous optimization 
of both objectives using separate decoder heads. Huang 
et al. [126] also applied their method (see previous para-
graph) to the downstream task of white matter segmenta-
tion on the publicly available WMH dataset [141], but did 
not compare with a fully supervised baseline.

Studies have witnessed performance gains for other 
brain MRI tasks, such as brain anatomy segmenta-
tion  [142–144], multiple sclerosis lesion segmenta-
tion  [135, 143], and stroke lesion segmentation  [143]. 
For instance, in an effort to improve brain anatomy 
segmentation, Chang et  al. pretrained to solve two pre-
text tasks: (1) predicting the location of the vocal in the 
nearest supervoxel and (2) predicting the deformation 
field between the current volume and an atlas. Simi-
lar to [126], the first term promotes saliency in rapidly 
changing regions close to boundaries. The second term 
requires the encoder to produce features that highlight 
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boundaries of larger structures, which are required for 
a registration task. Zoetmulder et  al.  [143] assessed the 
utility of supervised and self-supervised pretraining 
(with an auto-encoding pretext task) for multiple scle-
rosis lesion segementation, stroke lesion segmentation, 
and brain anatomy segmentation. They found that pre-
training using MRI data resulted in better performance 
on downstream tasks than with natural images. They did 
not find that self-supervised pretraining was superior to 
supervised pretraining for all downstream tasks, but they 
employed a pretraining dataset that included classifica-
tion and segmentation labels. While this is an important 
finding, the major utility of self-supervised learning is to 
leverage unlabelled data when labels are not available.

Prostate MRI diagnostic tasks
The prostate segmentation task in MSD [101] is a bench-
mark for prostate semantic segmentation, where the task 
is to segment the peripheral zone and central gland of 
the prostate. Chaitanya et  al.  [145] applied a two-stage 
pretraining strategy, where an encoder is trained using 
standard contrastive learning in the first phase, and some 
decoder blocks are trained during the second phase to 
minimize a local contrastive loss that encourages dissimi-
larity among distinct patches in the same image. When 
fine-tuning, they appended the remainder of the decoder 
blocks, achieving greater Dice scores than randomly ini-
tializing the full model. Taleb et al. [125] (see Brain MRI 
diagnostic tasks  section) also evaluated their approach 
using this dataset, but used a different test split.

The ProstateX benchmark dataset  [146] contains 
segmentation maps for cancerous lesions of the prostate. 
Fernandez-Quilez  et al.  [147] observed that pretraining 
with SimCLR  [23] improved downstream segmentation 
performance, compared random and ImageNet-pre-
trained initialization. They tailored the original stochastic 
transformation distribution such that it entailed plau-
sible prostate MRI slices. Wang et  al.  [148] engineered 
a more complex pretext task for the same downstream 
task, which involved optimizing a contrastive learning 
objective where images from the same patient comprise 
a positive pair, and an augmentation classification objec-
tive. The two methods cannot be compared because 
they employed different evaluation protocols. Bolous 
et  al.  [149] also observed an improvement for the same 
downstream task with a private dataset when pretraining 
using a reconstructive pretext task.

Cardiac MR segmentation
Segmentation of cardiac structures with machine learn-
ing is an extensively studied topic. Bai et  al.  [150] 
exploited the orientation of short-axis and long-axis 
planes as given in DICOM files to create a pretext task 

consisting of segmentation of fixed-size boxes placed at 
specific points along lines corresponding to bisection 
with other axes. The relative locations of the boxes is con-
stant with respect to the major cardiac structures. Pre-
training improved downstream segmentation of the left 
ventricle, right ventricle, and myocardium. Notably, opti-
mizing the pretext and downstream objective simultane-
ously (in a semi-supervised fashion) yielded the greatest 
test Dice score. This study constitutes another success-
ful example of leveraging domain knowledge available in 
unlabelled data. Ouyang et  al.  [151] demonstrated that 
self-supervised learning can replace standard training 
with labelled images for few-shot segmentation. They 
constructed superpixels from images and used randomly 
transformed copies of the original image for both support 
and query. Remarkably, self-supervised training resulted 
in better downstream segmentation of the left ventricle, 
right ventricle, and the myocardium on the Card-MRI 
dataset [152]. Other studies have integrated SSL into fed-
erated learning regimes  [153] and meta-learning  [154], 
citing improvement in performance for cardiac structure 
segmentation.

SSL has also proven useful for disease classification on 
cardiac MRI. Zhong et  al.  [155] found that, when cor-
rupting cine cardiac MR volumes with random pixel 
shuffling, patch obfuscation, and entire frame dropout, 
reconstructive pretraining improved downstream clas-
sification of preserved versus reduced ejection fraction 
subtypes of heart failure. An ablation study demonstrated 
pretraining using each corruption, in isolation, also 
improved performance.

Grading intervertebral disc degeneration
SSL pretraining has been applied successfully to a con-
stellation of other tasks involving MRI data. One of the 
earliest studies employing SSL for MRI was conducted in 
2017 by Jamaludin et al. [156], in which they pretrained a 
CNN on a spinal MRI dataset for the downstream task of 
grading disc degeneration disease according to the Pfir-
rmann system  [157]. They pretrained to simultaneously 
solve two pretext tasks: (1) contrastive learning where 
positive pairs were longitudinal samples from the same 
patient and (2) classification of vetebral body level. The 
pretrained models consistently outperformed models 
trained from scratch, for varying levels of training label 
availability. Solving the same downstream task on a dif-
ferent private dataset, Kuang et al. [158] adopted a recon-
structive pretext task, where inputs were distorted by 
applying different stochastic transformations to image 
regions corresponding to vertebral bodies, interverte-
bral discs, and the background. They used a previously 
described unsupervised segmentation algorithm to 
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compute masks corresponding to these classes, avoiding 
the need for labels.

Other MR diagnostic tasks
Studies have observed improved downstream perfor-
mance when conducting self-supervised pretraining 
for other tasks with MRI data, including intracranial 
hemorrhage detection  [159], anterior cruciate ligament 
tear detection  [160], spinal tumour subtype classifica-
tion [161], and abdominal organ segmentation [53, 105].

Applications in ultrasound imaging
Evidence exists in support of pretraining machine learn-
ing models for diagnostic tasks with ultrasound (US) 
examinations. However, as outlined in Search meth-
odology  section, considerably fewer publications have 
explored self-supervised pretraining for US than for the 
preceding three types of radiological imaging. Although 
US examinations are typically represented as 3D tensors 
(4D when motion is displayed with colour), they are fun-
damentally different from CT and MRI in that the third 
dimension is temporal as opposed to spatial. However, 
like CT and MRI, there are occasions where a single 
image is sufficient to perform a particular diagnostic task.

US breast malignancy detection
Nguyen et al. [53] explored the efficacy of BYOL [27] for 
the classification of breast US images from the public 
BreastMNIST dataset  [54] as either normal, contain-
ing benign tumours, or containing malignant tumours. 
Although the paper is rife with terminological errors, it 
provides a benchmark for a nonconstrastive method on 
a public dataset. They found that pretraining with BYOL 
resulted in worse test performance than randomly initial-
ized or ImageNet-pretrained weights. Perek et al. [162] 
arrived at a similar conclusion when trialling MoCo with 
a private dataset  [24]. Proposing a video-specific pre-
text task instead, Lin et al.  [163] pretrained an encoder-
decoder architecture to restore a US video after randomly 
masking out entire frames and patches in the remain-
ing frames. Upon performing semi-supervised fine-
tuning for benign versus malignant lesion classification 
on a private dataset, masked video pretraining yielded 
1% greater accuracy compared to random initialization. 
Focusing instead on breast lesion semantic segmenta-
tion, Mishra et al. [25] pretrained an encoder-decoder to 
perform a deterministic edge detection or segmentation 
task that does not require machine learning. They per-
formed experiments using two publicly available data-
sets (BUSI [164] & UDIAT [165]) and observed that SSL 
improved performance, with the gap increasing with less 
labelled training data availability. However, it is unclear 

which pretext task they selected for their downstream 
experiments.

Echocardiography tasks
SSL has been cited as useful for a variety of echocardiog-
raphy interpretation tasks. Anand et  al.  [166] sought to 
establish the performance of ubiquitous contemporary 
joint-embedding SSL methods for the task of view clas-
sification (e.g., SimCLR [23], MoCoV2 [167], BYOL [27], 
DINO [92]). Not only did they find that pretraining out-
performed random and ImageNet-pretrained initializa-
tion, but they demonstrated that pretraining with more 
unlabelled data widened the performance gap. SimCLR 
and BYOL pretraining have been investigated for the 
task of left ventricle segmentation. Saeed et  al.  [168] 
observed that SimCLR pretraining generally resulted in 
the best Dice score, but the difference was small across 
label availability fractions. Surprisingly, BYOL pretrain-
ing generally resulted in worse performance than full 
supervision. The results appeared to be consistent across 
two public datasets: EchoNet-Dynamic dataset  [169] 
and CAMUS  [170]. To reduce redundancy of pretrain-
ing examples, they chose to use one randomly selected 
frame per clip during pretraining, despite using two 
labelled frames per clip for the downsteam task (one each 
for end-systole and end-diastole); it is possible that using 
more frames during pretraining may have improved per-
formance. Dezaki et al. [171] devised a multifaceted pre-
text task customized for echocardiograms that consists of 
(1) reordering shuffled triplets of contiguous frames, (2) 
minimizing embeddings for contiuous frames and maxi-
mizing embeddings for temporally distance frames, and 
(3) minimizing the differences between embeddings of 
frames from multiple views corresponding to the same 
point in the cardiac cycle. Although fully supervised 
learning matched self-supervised pretraining when using 
all labels, SSL greatly improved performance when less 
labels were available. They observed similar results when 
evaluating on EchoNet-Dynamic.

Assessment of thyroid nodules on US
US is often employed to assess thyroid nodules for possi-
ble malignancy. Zhao  & Yang [111] pretrained a classifier 
to distinguish between benign and malignant nodules, 
using the public TN-SCUI2020 [172] dataset. They inte-
grated prior medical knowledge into their contrastive 
pretext task, which sought to minimize the differences 
between embeddings of handcrafted radiomics features 
and the original US image. Their method outperformed 
random initialization and pretraining with generic pre-
text tasks. Xiang et al.  [173] also devised a custom pre-
text task for this problem, characterized by thyroid US 
modality classification. In addition to B-mode US, their 
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downstream model received corresponding images 
from three US modalities, noting superior performance 
on their private dataset when pretraining as opposed to 
random or ImageNet-pretrained initialization. Guo 
et  al.  [174] focused on the related downstream task of 
grading nodules according to the widely adopted TI-
RADS [175] system.

Obstetric US tasks
Jiao et  al.  [176] described a custom US-specific pre-
text task consisting of predicting the order of 4 shuffled 
frames and predicting the continuous parameters of ran-
dom affine transformations applied to the frames, which 
resulted in an improvement over training from scratch 
for the task of fetal plane detection. Chen et  al.  [117] 
(described in Section  6.1) observed a similar result for 
the same task. Focusing instead on segmenting the utero-
placental interface, Qi et  al.  [177] pretrained a feature 
extractor for a customized jigsaw pretext task in which 
the permuted patches were sampled from image regions 
intersected the labelled region of interest. Results indi-
cated marginal improvement with pretraining, but the 
custom pretext task did not outperform Jigsaw  [22] for 
the majority of feature extractors studied. Of note is the 
fact that their pretext task cannot be considered SSL 
because, by definition, the pretext task is solved in the 
absence of labels.

Other US diagnostic tasks
Liu et  al.  [178] pretrained an encoder-decoder model 
for the downstream task of classifying gastrointestinal 
stromal tumours from endoscopic US images, observing 
greater average performance than full supervision with 
ImageNet-pretrained initialization (albeit with greatly 
overlapping confidence intervals). Interestingly, they 
leveraged thyroid and breast US datasets for pretrain-
ing. Zhou et al. [179] found random permutation predic-
tion to be a helpful pretext task for rheumatoid arthritis 
grading on US; however, the approach required manual 
region of interest labelling. Lastly, Basu et al.  [180] pro-
posed an US-specific contrastive pretext task that con-
sidered temporally separated frames from the same video 
as negative pairs, in addition to inter-video pairs. Positive 
pairs were frames separated temporally by no more than 
a predefined constant number of time steps. Further, 
they imposed a curriculum by gradually decreasing the 
minimum temporal distance constituting an intra-video 
negative pair. Intra-video negative pairs are important to 
consider because the anatomical context of an US video 
may differ dramatically throughout its duration. However, 
the authors did not address how negative pair sampling 
would be considered for cases where the probe is kept 

stationary throughout the video. The authors evaluated 
their approach on a private dataset for gallbladder malig-
nancy detection and on the public POCOVID-Net [181] 
lung US dataset for COVID-19 classification, citing per-
formance superior to ImageNet-pretrained initializa-
tion, SimCLR [23], and MoCoV2 [167].

Assessment & future directions
Evidence for SSL pretraining
Comparison to random initialization
The previous sections of this work illustrate the useful-
ness of self-supervised pretraining in deep learning for 
diagnostic tasks with radiological images. For each of 
the four major modalities investigated, there are multi-
ple studies that report an improvement in downstream 
performance metrics when initializing feature extractors 
with SSL-pretrained weights, generally compared to ran-
dom weight initialization in the fully supervised setting.

In most cases, studies demonstrated that pretraining 
was useful either as a first step using all labelled data, 
or that pretraining was particularly helpful in low label 
availability settings. When labels are completely available 
for a downstream task, there is a wide variation in the 
change in performance on test data. Some studies report 
marginal to no improvement [41, 177, 178], while others 
report significant gains  [133, 138, 158, 160]. Naturally, 
there are myriad reasons for such variability, including 
dissimilar pretext tasks, evaluation protocol differences, 
modality-specific noise, dataset volume and diversity, 
and downstream task difficulty.

The results of this review overwhelmingly suggest that 
pretraining with self-supervised learning is likely to result 
in improved performance on downstream supervised 
learning tasks, compared to randomly initialized super-
vised learners. Practitioners should consider trialling pre-
trained feature extractors during model development.

The power of ImageNet‑pretrained weights
The vast majority of the methods explored in this review 
compared their pretrained models to the fully supervised 
setting where weights are randomly initialized. Many also 
compared the results of their custom SSL method to pre-
viously proposed SSL methods that are not geared toward 
any specific imaging distribution. However, a fraction 
of studies compared their pretrained feature extractors 
to the ubiquitously employed ImageNet-pretrained 
weights. It is reasonable to compare against ImageNet-
pretrained weights because several medical computer 
vision models are initialized with ImageNet-pretrained 
weights  [43]. Indeed, many studies reported that Ima-
geNet-pretrained weights fared better than random 
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initialization, making them a stronger baseline against 
which to compare. Crucially, multiple studies reported 
cases where 2D CNNs or vision transformers did not 
appreciably outperform ImageNet-pretrained initializa-
tion  [41, 42, 53, 73–75]. We therefore advise authors of 
future SSL studies to compare their approaches to fully 
supervised baselines with random initialization and 
ImageNet-pretrained initialization where applicable.

A frequently absent experimental setting is the assess-
ment of the effect of initializing feature extractors with 
ImageNet-pretrained weights prior to self-supervised 
pretraining. The small set of studies that performed 
this comparison observed that the best performance in 
downstream radiological imaging interpretation tasks 
was achieved by setting the initial weights of the feature 
extractors to ImageNet-pretrained weights  [39, 43]. 
Future studies should include this experiment in their 
evaluation protocol.

Of course, it is necessary to acknowledge that publicly 
available ImageNet-pretrained weights do not exist for 
all feature extractor architectures (e.g., 3D CNNs), and 
that fully supervised pretraining can be prohibitively 
expensive.

Utility of SSL in low‑label settings
Aside from direct comparisons to fully supervised coun-
terparts using the same dataset, several studies have 
established the benefit of self-supervised pretraining in 
scenarios where labels are not provided for all available 
examples. Typically, such claims are established by com-
paring performance of fully and self-supervised mod-
els at different fractions of label availability, limiting the 
amount of data available for supervised fine-tuning on a 
downstream task [43, 99, 106, 117, 124, 171]. Some stud-
ies reported changes in downstream performance when 
larger unlabelled datasets that dwarfed the available 
labelled examples were leveraged for pretraining [39, 100, 
166]. Some studies even demonstrated that pretraining 
with unlabelled data geared for a different downstream 
task but that was collected using the same modality can 
improve downstream performance  [90, 126, 134, 178]. 
In the extreme scenario of few-shot learning, self-super-
vised objectives may be employed during training [151]. 
The considerable amount of evidence outlined in this 
review suggests that practitioners should leverage unla-
belled data when available and pretrain feature extractors 
using SSL.

Relative dearth of ultrasound research
As depicted in Fig.  2a, the number of papers eligible 
for inclusion in this review concerning US data is less 
than half of the number included for X-ray, CT, or MRI. 

Hence, there exists a need for (1) more investigations 
that quantify the impact of preexisting SSL pretraining 
tasks for US tasks and (2) studies that modify preexisting 
or propose novel SSL methods that are suited to the US 
modality. US presents additional challenges for machine 
learning systems compared to the other modalities, such 
as increased noise, the temporal dimension, acquisition-
related differences in probe movement and orientation, 
motion artefacts, and geometrical differences across 
probe types and manufacturers. As a result, further work 
is warranted in determining the types and aspects of pre-
text tasks suitable for US.

Theoretical support for empirically validated methods
The majority of the studies presented in this review 
provide SSL methods that are presented as task-spe-
cific, instead of applying preexisting methods to ne. 
Some deviate wildly from previous work  [77, 136, 142, 
143], and others are incremental changes to previously 
explored pretext tasks  [115, 121]. The pretext tasks put 
forth in such studies are often fashioned with clinical 
and/or background knowledge about the downstream 
task, but are mostly justified by intuition. The arguments 
for further use of the proposed methods typically con-
sists entirely of empirical validation. Multiple such stud-
ies boast superior performance of their methods boast 
empirical results but do not establish statistically signifi-
cant improvements [85, 178, 182].

As discussed in Theoretical support  section, some 
SSL methods have received theoretical justification in 
terms of performance on downstream task. Many stud-
ies discussed in this survey employ such justified meth-
ods, such as SimCLR [23] and Barlow Twins [26]. These 
methods are guaranteed to improve performance on 
downstream tasks as long as the labels for positive pairs 
would be the same in the downstream task. For example, 
Fernandez-Quilez et  al.  [147] employed SimCLR with a 
modified transformation distribution that captured dif-
ferences between positive pairs that would not constitute 
a change of label. Azizi  et al.  [43] also employed Sim-
CLR, but expanded the pairwise relationship to include 
multiple acquired views of the same pathology. Applying 
custom data augmentation transformations that do not 
change the label distribution in the downstream task or 
defining the pairwise relationship based on preexisting 
clinical knowledge are viable strategies for the successful 
application of theoretically justified joint-embedding SSL 
methods. Such clinical knowledge may come “for free" in 
that it does not require further labelling — practitioners 
could consider sources such as multiview examinations, 
multimodal studies, accompanying radiology reports, 
and DICOM tags. Future methods should strive to apply 
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theoretically justified approaches to SSL pretraining 
where possible; otherwise, statistical significance testing 
should be conducted when claims are made regarding the 
superiority of novel methods.

Comparable and reproducible benchmarks
A longstanding problem in machine learning for medical 
imaging is the lack of public datasets, which thwarts rep-
licability of results. A considerable number of studies in 
this review presenting novel SSL methods for radiologi-
cal imaging tasks conducted their evaluations on private 
datasets only. As a result, many of the results presented 
are not directly commparable. This review was only able 
to directly compare studies for a limited set of down-
stream tasks where authors reported performance on 
public datasets. Authors suggesting novel SSL methods 
are encouraged to evaluate their methods using public 
datasets, or to include results on public datasets in addi-
tion to their private datasets (e.g., [148, 171]). When eval-
uating on public datasets, researchers should use train/
test splits that are identical to preceding studies. Further-
more, authors should endeavour to utilize identical pre-
training and training sets when evaluating their approach 
on standard public datasets. To promote usage of public 
benchmarks in future studies, Tables 6, 7, 8, and 9 detail 

all public datasets referenced in this review, providing 
URLs for access.

The impact of pretraining on generalizability
Machine learning models trained for tasks involving radi-
ological images are utterly susceptible to performance 
drops under distributional shift  [8]. Biases can be intro-
duced by the distribution of confounding or mediating 
variables in the training set, such as labelling discrepan-
cies, patient demographics, acquisition technique, and 
device manufacturer. External validation is therefore a 
pivotal pre-deployment step. Some studies in this review 
reported improvement in performance on external test 
sets when self-supervised pretraining was conducted [43, 
64, 179], but further work is required to confidently char-
acterize this phenomenon.

Limitations
Despite the comprehensiveness of this survey, some 
limitations must be noted. First, the study’s exclusive 
focus on self-supervision excluded adjacent categories 
of machine learning used in practice to produce feature 
extractors for transfer learning. Supervised pretraining 
on datasets of medical images can also produce feature 
extractors  [187]. However, it presupposes access to suf-
ficiently large quantities of labelled data – an uncommon 

Table 6  The public X-ray datasets referenced in this review, including links to request or download the data

Name [Citation] Description Examples Patients

CheXpert [6] A fully manually annotated 14-class dataset of chest X-rays. 224 316 65 240

ChestX-ray14 [33] A 14-class dataset of chest X-rays with labels extracted from radiology reports. 112 120 30 805

ChestMNIST [34] Identical to ChestX-ray14. Part of MedMNIST [54]. 112 120 30 805

COVIDx CXR-2 [56] chest X-rays labelled for the presence or absence of COVID-19. 19 203 16 656

MIMIC-CXR [65] Chest X-rays, metadata, and free text reports. Same label categories as CheXpert. Some labels 
were manually determined, and others were automatically assigned using the reports.

371 920 65 079

RSNA Pneumonia [183] Chest X-rays with bounding box labels for bacterial and viral pneumonias 30 000 12 274

PneumoniaMNIST [184] Paediatric chest X-rays labelled for the presence or absence of pneumonia. Part of MedMNIST. 5856 5856

Table 7  The public CT datasets referenced in this review, including links to request or download the data

Name [Citation] Description Images Exams Patients

LIDC-IDRI [71] Chest CT exams labelled for lung nodule classification and segmentation. - 1018 1010

LUNA2016 [72] Chest CT exams labelled for the presence of lung nodules.

COVID-CT [89] Chest CT exams labelled for the presence or absence of COVID-19. 812 - 271

NIH Pancreas-CT [95] Abdominal contrast-enhanced CT scans with pancreas segmentation labels - 82 80

MSD Pancreas [101] Abdominal CT exams with segmentation labels for pancreas parenchyma, cysts, 
and tumours. Part of the Medic​al Segme​ntati​on Decat​hlon [185].

- 420 -

BTCV [103] Abdominal CT exams with segmentation labels for 13 organs. - 50 -

KiTS19 [110] CT exams labelled for kidney tumour segmentation - 300 300

WHS-CT [119] Axial CT exams with segmentation labels for the ventricles and atria of the heart. - 60 60

RSNA-PE [186] Chest CT exams annotated with instances of pulmonary emboli. 2 995 147 12 195 12 195

https://stanfordmlgroup.github.io/competitions/chexpert/
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://medmnist.com
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://medmnist.com
https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
https://physionet.org/content/mimic-cxr-jpg/2.0.0
https://stanfordmlgroup.github.io/competitions/chexpert/
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pneumonia-detection-challenge-2018
https://medmnist.com
https://medmnist.com
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
https://luna16.grand-challenge.org
https://github.com/UCSD-AI4H/COVID-CT
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
http://medicaldecathlon.com
https://medicaldecathlon.com/
https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
https://kits19.grand-challenge.org
https://zmiclab.github.io/zxh/0/mmwhs
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pe-detection-challenge-2020
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situation in medical imaging. Semi-supervised learning 
is another family of methods designed for settings where 
unlabelled examples outnumber labelled examples. In 
contrast to SSL, semi-supervised methods involve the 
simultaneous optimization of an unsupervised objective 
and a supervised objective with task-specific labels. Gen-
erally, the pretraining phase of SSL produces a generic 
feature extractor without knowledge of the downstream 
task; whereas, semi-supervised training is directly linked 
to the task of interest. Since semi-supervised learn-
ing is not within the scope of this survey, we refer read-
ers to other works covering its applications in medical 
imaging [188–190].

Although this survey’s scope was limited to applica-
tions in X-ray, CT, MRI, and ultrasound, it is important 
to acknowledge that SSL methods have been applied in 
other areas of medical imaging, such as histopathologi-
cal, dermatologic, and endoscopic images [11, 12]. Prac-
titioners working with modalities less represented in the 
literature may benefit by examining techniques described 
for different modalities, as some methods may be broadly 
applicable.

Conclusions
This work reviewed a range of recent studies across 
modalities, datasets, and methods that explored the 
impact of self-supervised pretraining for the automa-
tion of diagnostic tasks in radiological imaging. The 

consensus observed in the majority of the publications 
included in this survey suggest that SSL pretraining using 
unlabelled datasets generally improves the performance 
of supervised deep learning models for downstream tasks 
in radiography, computed tomography, magnetic reso-
nance imaging, and ultrasound. The findings substanti-
ate the utility of unlabelled data in radiological imaging, 
thereby reducing the prohibitive expense of expert label-
ling. Practitioners should therefore consider self-super-
vised pretraining when unlabelled data is abundant. 
Future work in SSL for radiological imaging should focus 
on developing and/or applying theoretically justified 
methods that capitalize on clinical knowledge, further 
exploring SSL for problems in ultrasound, and ascertain 
the effect of SSL on generalizability.
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Table 8  The public MRI datasets referenced in this review, including links to request or download the data

Name [Citation] Description Exams Patients

BraTS [123] MRI exams labelled for brain tumour segmentation and classification. The benchmark has been 
updated and previous versions are available.

8000 2000

ADNI [127] Brain MRI exams with labels for normal controls, mild cognitive impairment, and Alzheimer’s disease 2641 811

OASIS [128] Brain MRI exams with segmentation labels, patient characteristics, and labels for Alzheimer’s disease 2842 1379

HCP [139] Unannotated multi-modal MR scans - 1206

WMH [141] Brain MRI exams with labels for white matter hyperintensities 150 150

ProstateX [146] Prostate MRI studies labelled for localization and classification of prostate lesions 538 344

Card-MRI [152] Cardiac MRI exams with labels for ventricular blood volume and myocardium segmentation 60 60

Table 9  The public US datasets referenced in this review, including links to request or download the data

Name [Citation] Description Images Videos Patients

EchoNet-Dynamic [169] Echocardiography videos with end diastolic and end systolic volume labels - 10 030 10 030

TN-SCUI2020 [172] Thyroid US videos with segmentation labels for thyroid nodules - 3644 3644

POCOVID-Net [181] Links to lung US videos labelled for COVID-19, other viral pneumonia, bacterial pneumonia, 
and healthy lung.

1103 64 -

CAMUS [170] Echocardiograms labelled for segmentation and volume estimation. - 500 500

BUSI [164] Breast US images with classification labels for normal, benign lesion, and malignant lesions. 780 - 600

BreastMNIST [164] Identical to BUSI [164]. Part of MedMNIST. 780 - 600

UDIAT [165] Breast US images labelled as benign or malignant. 163 - 163

https://doi.org/10.1186/s12880-024-01253-0
https://doi.org/10.1186/s12880-024-01253-0
http://braintumorsegmentation.org
https://adni.loni.usc.edu
https://oasis-brains.org
https://www.humanconnectome.org
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/AECRSD
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
https://zmiclab.github.io/zxh/0/mscmrseg19
https://echonet.github.io/dynamic
https://tn-scui2020.grand-challenge.org
https://github.com/jannisborn/covid19_ultrasound
https://camus.creatis.insa-lyon.fr/challenge
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://medmnist.com
https://medmnist.com
http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php
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