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Abstract
Background  The relationship between the biological pathways related to deep learning radiomics (DLR) and lymph 
node metastasis (LNM) of breast cancer is still poorly understood. This study explored the value of DLR based on 
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in LNM of invasive breast cancer. It also analyzed 
the biological significance of DLR phenotype based on genomics.

Methods  Two cohorts from the Cancer Imaging Archive project were used, one as the training cohort (TCGA-Breast, 
n = 88) and one as the validation cohort (Breast-MRI-NACT Pilot, n = 57). Radiomics and deep learning features were 
extracted from preoperative DCE-MRI. After dual selection by principal components analysis (PCA) and relief methods, 
radiomics and deep learning models for predicting LNM were constructed by the random forest (RF) method. A 
post-fusion strategy was used to construct the DLR nomograms (DLRNs) for predicting LNM. The performance of the 
models was evaluated using the receiver operating characteristic (ROC) curve and Delong test. In the training cohort, 
transcriptome data were downloaded from the UCSC Xena online database, and biological pathways related to the 
DLR phenotypes were identified. Finally, hub genes were identified to obtain DLR gene expression (RadDeepGene) 
scores.

Results  DLRNs were based on area under curve (AUC) evaluation (training cohort, AUC = 0.98; validation cohort, 
AUC = 0.87), which were higher than single radiomics models or GoogLeNet models. The Delong test (radiomics 
model, P = 0.04; GoogLeNet model, P = 0.01) also validated the above results in the training cohorts, but they were not 
statistically significant in the validation cohort. The GoogLeNet phenotypes were related to multiple classical tumor 
signaling pathways, characterizing the biological significance of immune response, signal transduction, and cell 
death. In all, 20 genes related to GoogLeNet phenotypes were identified, and the RadDeepGene score represented a 
high risk of LNM (odd ratio = 164.00, P < 0.001).
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Background
Medical imaging such as computer tomography, mag-
netic resonance imaging (MRI), and ultrasound are 
important and non-invasive examination tools used in 
cancer diagnosis and treatment. Medical images carry 
tumor information for clinical decision-making in two 
forms: “semantic” and “agnostic” phenotypes [1, 2]. 
Semantic features are mainly based on the extent of visu-
alization by the naked eye; they have low information uti-
lization but are highly explanatory. Agnostic phenotypes 
are mainly based on computer visualization of tumor 
information in mathematical form; they are informative 
and highly utilized, but their interpretability is debatable.

The application of semantic phenotypes in tumor treat-
ment process has been clarified. For example, an adja-
cent vessel sign was associated with axillary lymph node 
metastasis (LNM), increased Ki-67 index, and lympho-
vascular infiltration, representing poorer prognosis for 
patients [3]. In contrast to semantic phenotypes, agnostic 
phenotypes not only quantify morphological phenotypes, 
but also break through the limitations of the naked eye to 
quantify information at deeper level-even that related to 
the genetic level. For example, based on 91 preoperative 
breast cancer MRI images, quantitative radiomics was 
found to replicate the representation of tumor size and 
BI-RADS imaging phenotypes visually extracted by radi-
ologists [4]; MRI-based quantification represented phe-
notypes of size and shape appropriately correlated with 
proliferative and apoptotic pathways [5].

Agnostic phenotypes have two main forms of quan-
tification: radiomics and deep learning [6, 7]. Different 
techniques capture their own specific information, and 
the fusion of information between techniques can further 
improve the knowledge of the target. Multitype stud-
ies based on radiomics and/or deep learning features 
have been conducted to evaluate LNM in breast cancer. 
For example, in one multi-center study, a radiogenomics 
model combining radiomics features and genomics fea-
tures improved the performance of predicting LNM in 
breast cancer [8]; in another based on 110 MRI images 
from a single center, potential pathways for the genetic 
mechanism of deep learning imaging phenotypes were 
identified [9]. The biological significance of the radiomics 
feature phenotype had been analyzed in multiple studies, 
but deep learning feature phenotypes were only identified 
during the image recognition process, and the quantifica-
tion of specific features was not mentioned. In contrast 
to radiomics phenotypes, deep learning phenotypes are 

more inclined to be quantified by automatic learning, 
and the biological significance of their representation still 
needs to be further explored.

This study was focused on the development of deep 
learning radiomics nomograms (DLRNs) based on 
two MRI image cohorts to explore DLRNs association 
with LNM in invasive breast cancer. The biological sig-
nificance represented by deep learning radiomics (DLR) 
phenotype was also explored based on genomics.

Methods
Image cohorts
Two MRI image cohorts of invasive breast cancer were 
downloaded from the Cancer Imaging Archive (TCIA) 
project [10]. One was the training cohort (The Cancer 
Genome Atlas-Breast, TCGA, N = 108), and the other 
was the validation cohort (Breast-MRI-NACT Pilot, 
N = 64). The inclusion criteria for the image cohorts were 
preoperative dynamic contrast enhanced magnetic reso-
nance imaging (DCE-MRI), which only used 1.5 Tesla 
magnet strength using GE scanners and protocols (GE 
Medical Systems, Milwaukee, WI, USA) for clarifying 
the potential difference between scanner and image pro-
tocol (training cohort, n = 93; validation cohort, n = 64). 
In order to explore the biological characteristics corre-
sponding to the imaging phenotype, the transcriptome 
data of the training cohort were downloaded from TCGA 
project (UCSC Xena online database, FPKM format) 
matched by TCIA, and the biological characteristics rep-
resented by the imaging phenotype were analyzed based 
on messenger RNA (mRNA) molecular correlation [11]. 
Cases that could not be located or were ambiguous (n = 4) 
or were without transcriptome data (n = 1) were also 
excluded from the training cohort. Cases that could not 
be located or were ambiguous (n = 7) were also excluded 
from the validation cohort. Finally, under the condition 
that two radiologists checked them without ambigu-
ity, 145 patients with breast cancer were included in the 
image cohorts (training cohort, n = 88; validation cohort, 
n = 57). The mean age was 51.16 ± 11.01 years, with an age 
range of 29–82 years.

Image segmentation and phenotype quantification
Breast DCE-MRI images were collected using dual breast 
coils on 1.5-T scanners. The imaging protocol was based 
on T1-weighted gradient echo sequences of gadolinium-
based contrast agents [10]. The sagittal T1WI DCE-MRI 
images of the cohorts were imported into ITK-snap 

Conclusions  DLRNs combining radiomics and deep learning features of DCE-MRI images improved the preoperative 
prediction of LNM in breast cancer, and the potential biological characteristics of DLRN were identified through 
genomics.
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(version 3.68) software, with the same window width 
(800) and window level (1600) set for each. To improve 
discrimination between phenotypes, the acquisition areas 
were resampled to specific isotropic resolutions (1  mm, 
1  mm, 1  mm) [12]. Two radiologists (5 and 10 years of 
experience) identified and ruled the boundaries of the 
tumor lesions, without earlier information on the pathol-
ogy and without clinical information. In the Python envi-
ronment, 1781 phenotypes including size, shape, edge, 
and internal structure information were extracted from 
the regions of interest (ROIs) by PyRadiomics extractor 
[13].

For deep learning phenotypes, in the case of the above 
ITK-snap software segmentation image, based on the 
maximum diameter and clear level of the lesions, two 
kinds of deep learning networks (GoogLeNetNet and 
ResNet50) were used for feature extraction in the Python 
environment [14].

Development and validation of deep learning radiomics 
predictive models
To increase the comparability of phenotypes, Z-score 
method was applied to normalize all radiomics or deep 
learning phenotypes. Both radiomics and deep learning 
phenotypes were in thousands, in high dimensions, with 
mixed information and redundancy, so it need to identify 
valuable phenotypes closely related to LNM for reduc-
ing the possibility of overfitting. For this reason, prin-
cipal components analysis (PCA) and relief algorithm 
were applied for dimensionality reduction, and random 
forest (RF) was applied for modeling [15–17]. First, in 
the training cohort, PCA primarily recombined a new 
set of uncorrelated composite variables from all phe-
notypes and extracted a few of the composite variables 
that reflected the original state of the image phenotypes 
as faithfully as possible. Then, the extracted phenotypes 
were provided to the relief algorithm to select an opti-
mal modeling subset through the LN state, and present 
it to the RF machine learning algorithm to construct pre-
dictive models. The optimal models were selected after 
5-fold cross validation, denoted as radiomics or deep 
learning signature. Repeating this process, radiomics 
models, GoogLeNet models and ResNet50 models were 
constructed, respectively. To this end, radiomics and 
deep learning phenotypes were integrated to construct 
the DLRNs [18].

Identification of biological significance of deep learning 
radiomics
In the training cohort, for the mRNA matrix, log2(x + 1) 
was used to normalize all genes and remove genes with 
mean values less than 1 from all samples, leaving 11,687 
genes. Weighted gene co-expression network analysis 
(WGCNA) is a system biology approach to describing 

gene association patterns. It can identify highly syner-
gistic variants in genomics modules and is based on the 
association of genomics modules with phenotypes [19]. 
To better understand the biological significance repre-
sented by tens of thousands of genes, WGCNA analysis 
of the 11,687 genes was implemented based on R lan-
guage. Module eigengenes (MEs) were the expression 
profiles of module genes; the minimum number of genes 
per module was set to 60, the sensitivity was 3, and the 
module merging threshold was 0.25 [20]. In addition, the 
radiomics signature and GoogLeNet signature were clas-
sified into high and low risk groups with median values, 
and their correlation with different modules was ana-
lyzed. Further, the biological significance of the associ-
ated modules was analyzed using the Kyoto Gene and 
Genome Encyclopedia (KEGG) database [21]. Gene set 
variation analysis (GSVA) calculated genes of the same 
significance or function grouped into a single enrich-
ment score in order to assess changes in the activity of 
the pathway/function in which the genes were located 
[22]. GSVA was used to study 36 genetic pathways in the 
KEGG database, and their association with the imaging 
phenotype was analyzed based on Pearson correlation 
coefficient (PCC). The technical flowchart of the study is 
presented in Fig. 1.

Statistic analysis
SPSS (version 17.0), (version 4.20), and MedCalc software 
were used for statistical analysis and plotting. Measure-
ment data were compared between groups by using the 
Mann-Whitney U test. The counting data were compared 
between groups using the chi-square test. The perfor-
mances of the models were evaluated using the receiver 
operating characteristic curve (ROC) cure and the area 
under the curve (AUC), accuracy (ACC), sensitivity 
(SEN), and specificity (SPEC) were calculated. Based on 
MedCalc software, the Delong test was used to analyze 
the merits of the different ROC curves [23]. In addition, 
the net reclassification index (NRI) and the integrated 
discrimination index (IDI) were calculated based on the 
“PredictABEL” package to compare the discrimination 
performance of the different prediction models [24, 25]. 
The Hosmer-Lemeshow test was used to analyze the 
consistency of the DLRNs. Decision curve was used to 
analyze the clinical utility of the DLRN. P < 0.05 was con-
sidered statistically significant.

Results
Lymph node status in image cohorts
The training cohort included 88 invasive breast cancer 
patients with a 46.59% LNM positivity rate; and the vali-
dation cohort included 57 invasive breast cancer patients 
with a 61.40% LNM positivity rate, which was not statis-
tically significant (chi-square test, P = 0.08) (Fig. 2).
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Development and validation of deep learning radiomics 
predictive models
In the training cohort, after 1781 phenotypes were 
selected by the dual method of PCA and relief, 41 phe-
notypes were submitted to the RF machine learning algo-
rithm to develop the radiomics model. The radiomics 
model yielded ACC, SEN, SPEC, and AUC of 0.88, 0.93, 
0.83, and 0.95 (95% confidence interval (CI), 0.91–0.98), 
respectively, in the training cohort; and 0.79, 0.77, 0.82, 
and 0.83 (95% CI, 0.69–0.94), respectively, in the valida-
tion cohort.

From 1024 GoogLeNetnet and 2048 ResNet50 deep 
learning phenotypes, 67 and 39 phenotypes were selected 
in the same way to construct prediction models. The 
GoogLeNet model yielded ACC, SEN, SPEC, and AUC of 
0.82, 0.90, 0.74, and 0.91 (95%CI, 0.84–0.96), respectively, 
in the training cohort; and 0.77, 0.86, 0.64, and 0.77 (95% 
CI, 0.64–0.90), respectively, in the validation cohort. The 
ResNet50 model yielded ACC, SEN, SPEC, and AUC of 
0.81, 0.83, 0.79, and 0.85 (95%CI, 0.76–0.94), respectively, 

in the training cohort; and 0.70, 0.66, 0.77, and 0.71 (95% 
CI, 0.56–0.86), respectively, in the validation cohort.

In the training cohort, in the prediction reliability of 
the different models were explored by Delong test. The 
radiomics model and the GoogLeNet model (P = 0.25), 
the ResNet50 model (P = 0.05) had no statistically dif-
ferent. In addition, there was no statistical difference 
between the GoogLeNet model and the ResNet50 model 
in the comparison of the two deep learning models 
(P = 0.30). The results of the validation cohort were con-
sistent with the training cohort. However, in terms of 
sensitivity, the GoogLeNet model was more capable of 
predicting LNM than the ResNet50 model in the train-
ing cohort and validation cohorts. Therefore, GoogLeNet 
model was selected for further analysis.

Development of the DLRN proceeded by integrat-
ing radiomics model and GoogLeNet model through a 
logistic regression algorithm. The DLRN yielded ACC, 
and AUC of 0.93 and 0.98 (95%CI, 0.93-1.00), respec-
tively, in the training cohort; and 0.90 and 0.87 (95% CI, 
0.76–0.95), respectively, in the validation cohort (Fig. 3A; 

Fig. 1  Overview of the study. (A) Cohorts downloaded from TCIA. (B) Overall design of this study. (C) Flow chart of this study
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Table 1). The Delong test showed that the DLRN was sta-
tistically different from the radiomics model (P = 0.04) 
and the GoogLeNet model (P = 0.01) in prediction effect, 
indicating that the image information through multiple 
methods has some complementary effect to improve 
the prediction effect. After the calculation of NRI and 
IDI, it was verified that the DLRN improved the predic-
tion effect compared with the single radiomics model 
(training cohort, NRI > 0, P = 0.68, IDI: 12.00%, P = 0.004; 
validation cohort, NRI > 0, P < 0.01, IDI: 14.00%, P < 0.01). 
DCA proved that the net income of the DLRN was 
higher than that of the radiomics or GoogLeNet model, 
indicating that the treatment strategies predicted based 
on the DLRN had better clinical effectiveness (Fig.  3B). 
The Hosmer-Lemeshow test indicated good agreement 

between DLRN predictions and actual LNM (training 
cohort, P = 0.51; validation cohort, P = 0.19) (Fig. 3C).

The LN status distributions of model signatures in all 
cohorts were significantly different (Mann-Whitney U 
test, P < 0.05). In addition, all signatures were correlated 
in the training cohort, especially for the radiomics and 
GoogLeNet signatures (PCC, r = 0.59, P < 0.01), and also 
in the validation cohort (PCC, r = 0.32, P = 0.01) (Fig. 4).

Identification of Biological significance of deep learning 
radiomics
In the training cohort, 32 gene modules were constructed 
by WGCNA analysis, and the results were shown in the 
Fig. 5A and B. Two gene modules (brown module; purple 
module) were associated with the radiomics signature 

Fig. 2  Lymph node status in image cohorts. (A) 145 LN distribution of invasive breast cancer. There was no statistically significant difference between 
cohorts (chi-square test, P = 0.08). (B) Typical LNM example. Deep learning phenotypes were based on 2D image extraction, radiomics phenotypes were 
based on 3D image extraction
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high-risk group (Pearson correlation r = 0.22, P = 0.04 for 
the brown module; Pearson correlation r = 0.23, P = 0.03 
for the purple module). Surprisingly, six gene modules 
were associated with the GoogLeNet signature high-risk 
group, with the green-yellow module having the strongest 
positive correlation (Pearson correlation r = 0.31, P < 0.01) 
and the dark-red module having the strongest negative 
correlation (Pearson correlation r=-0.29, P < 0.01). Inter-
estingly, the brown module was associated with both 
the radiomics and GoogLeNet signature. The core genes 
associated with the high-risk group were identified from 
the related gene module, resulting in 32 genes identified 
from the radiomics-related module and 75 genes identi-
fied from the GoogLeNet-related module, intersecting 20 
genes to construct a DLR-related gene (RadDeepGene) 

score that also reliably predicted LNM (AUC = 0.82, SEN, 
0.78, SPEC, 0.74; risk coefficient, OR = 164.00, P < 0.001). 
The biological significance of signature representation 
was further explored by KEGG. Different pathways were 
enriched in radiomics-related and GoogLeNet-related 
gene modules, mainly focusing on classical signal-
ing pathways, and the results were shown in Fig. 6. The 
results for the brown module deserved more attention. 
It was closely related to Hedgehog, MAPK, P53, Ras, 
and FoxO signaling pathways. In addition, estrogen and 
GnRH signaling pathway indicated that hormone secre-
tion related pathways were also closely related to the sig-
natures. Hedgehog and FoxO signaling pathways were 
related to signatures in multiple modules.

Table 1  Performance of diferent models for predicting LNM in the training and validation cohorts
Model Training cohort Validation cohort

Radiomics GoogLeNet ResNet50 DLRN Radiomics GoogLeNet ResNet50 DLRN
AUC 0.95 0.91 0.85 0.98 0.83 0.77 0.71 0.87
95%CI 0.91–0.98 0.84–0.96 0.76–0.94 0.93-1.00 0.69–0.94 0.64–0.90 0.56–0.86 0.76–0.95
ACC 0.88 0.82 0.81 0.93 0.79 0.77 0.70 0.90
SEN 0.93 0.90 0.83 1.00 0.77 0.86 0.66 1.00
SPEC 0.83 0.74 0.79 0.73 0.82 0.64 0.77 0.85
PPV 0.83 0.76 0.77 0.87 0.87 0.79 0.82 0.85
NPV 0.93 0.90 0.84 1.00 0.69 0.74 0.59 1.00

Fig. 3  The performance of deep learning radiomics models. (A) ROC curve analysis. (B) DCA analysis. (C) Calibration curve analysis
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To further explore the biological significance of DLR 
phenotypes with breast cancer invasion and metastasis, 
genetic and molecular functions associated with tumor 
cell growth and death, immune response, cell communi-
cation and signal transduction pathways were identified 
by GSVA. Unfortunately, in that the radiomics signature 
was not associated with these genetic and molecular 
functions; instead, GoogLeNet signature was associated 
with cell death (r=-0.27), immune response (r, -0.28-0.23), 
signal transduction (r=-0.21), and especially immune 
response, with the presence of five signaling pathways. 
Excitingly, MAPK signaling pathway and NOD-like 
receptor signaling pathway showed correlations with the 
GoogLeNet signature in both KEGG enrichment analysis 
and association analysis.

Discussion
DLR MRI agnostic phenotypes have been shown to be 
potential alternative markers for predicting breast can-
cer LNM, but the biological significance of DLR phe-
notypes, especially deep learning phenotypes, remains 
poorly understood. In this study, first, the potential value 

of radiomics and deep learning phenotypes to predict 
breast cancer LNM was validated based on two cohorts, 
both with AUCs above 0.70 and accuracy above 0.70 in 
the validation cohort. Undoubtedly, the DLRN developed 
based on radiomics-deep learning phenotypes improved 
prediction after the Delong test and NRI calculation as 
in other similar studies. Then, potential biological path-
ways associated with LNM were revealed, with a special 
focus on typical signaling pathways as well as pathways 
for cell growth and death, immune response, cell com-
munication, and signal transduction. Surprisingly, both 
radiomics and deep learning phenotypes were associ-
ated with brown gene modules at high risk of LNM, with 
classical pathways of signal transduction, such as the 
MAPK signaling pathway and with signaling pathways 
of immune response, such as the NOD-like receptor sig-
naling pathway. In addition, 20 key genes associated with 
DLR phenotypes were identified, and the constructed 
RadDeepGene score showed the same medium to high 
predictive effect (AUC = 0.82, OR = 164.00, P < 0.001). The 
findings indicated that DLRN combining radiomics and 
deep learning features of DCE-MRI images improved the 

Fig. 4  Association of deep learning radiomics signatures. (A) Training cohort. (B) Validation cohort. Distribution difference of signatures in LN status of 
each cohort (Mann-Whitney U test, * P<0.05, ** P<0.01, ***P<0.001). Model signatures were correlated in the training cohort, especially in the radiomics 
and GoogLeNetnet signatures (PCC, r = 0.59, P < 0.01), and also in the validation cohort (PCC, r = 0.32, P = 0.01)
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Fig. 5  Gene coexpression module construction. Through WGCNA analysis (A), a total of 32 gene modules were constructed (B)
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performance of preoperative prediction of LNM in breast 
cancer, and the potential biological characteristics of 
DLRN were identified through genomics.

This study could be said to summarize the characteris-
tics of previousstudies and to further expand their results. 
Even though DLR studies had combined deep learning 
and radiomics features, but there were still lack of stud-
ies on DLR biological characteristic analysis, which was 
the novelty of this study. First, multiple studies had ana-
lyzed the predictive value of deep learning and radiomics 
phenotypes, but ignored the interactions between the 
two and the variability of phenotypes quantified by dif-
ferent deep learning algorithms. This study both veri-
fied that radiomics and deep learning phenotypes offer 
complementary information and found an information 
overlap that increases the interpretability of deep learn-
ing phenotypes. In addition, most previous studies had 
used the VGG16 deep learning algorithm to extract 
image information [26]. In contrast, this study used the 
GoogLeNet and ResNet50 deep learning algorithms and 
compared the differences in the information extracted 
by them. No difference was observed in the effective-
ness of the models developed by these two deep learning 

phenotypes. Second, this study revealed the biological 
significance of deep learning radiomic phenotypes trans-
ferred with LNM based on radiogenomics. In contrast to 
similar studies, the biological significance of deep learn-
ing phenotypes was still poorly understood. Moreover, 
most radiogenomics studies had analyzed the biologi-
cal significance represented by a large number of dif-
ferentially expressed genes, but ignored the interactions 
between genes. This study mapped imaging phenotypes 
to gene modules based on WGCNA, which may enhance 
its reproducibility and interpretability. In addition, most 
previous studies had focused on relatively broad imaging-
related pathways, whereas specific pathways associated 
with deep learning of radiogenomic phenotypes, espe-
cially immune-related pathways, were dissected in the 
present study.

In a past investigation, it was found that DLR was 
mainly used in the three areas of breast tumor diagnosis 
and identification, LNM, and neoadjuvant chemotherapy 
efficacy; for example, based on the handmade radiomics 
phenotypes and deep phenotypes extracted from 3062 
DCE-MRI images for predicting LNM of breast cancer, 
the support vector machine model achieved a moderate 

Fig. 6  Identification of biological significance of deep learning radiomics
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prediction effect [27]. Based on radiomic phenotypes and 
deep learning phenotypes from DCE-MRI images before 
and after neoadjuvant chemotherapy to predict patho-
logical complete remission, the AUC reached 0.9 [28]. In 
this study, radiomics phenotypes seem to be more effec-
tive than deep learning phenotypes, similarly to previous 
studies. For example, based on the RF machine learning 
algorithm, the radiomics model exhibited better discrim-
ination than the deep learning model (AUC, 0.86 vs. 0.79; 
accuracy, 0.78 vs. 0.73) [29]. The DLRN developed based 
on DLR phenotypes showed prediction results similar 
to those in previous studies. For the degree of informa-
tion quantification of the images, this study quantified 
1781 radiomics phenotypes, which was a larger amount 
compared to some previous studies. However, the thou-
sands of deep learning phenotypes quantified based on 
GoogLeNet and ResNet50 were less informative com-
pared to vgg16. In addition, for model evaluation, the 
Delong test and NRI/IDI calculations were used to dou-
ble-validate the differences in the reliability of the dif-
ferent models, and NRI was found to suggest differences 
between models in the case of a negative Delong test. For 
example, the Delong test found no significant difference 
between the radiomics model and the GoogLeNet model, 
but the NRI found that the radiomics model improved 
the effect over the GoogLeNet model (P = 0.008).

The relationship between image phenotypes and bio-
logical pathways has been shown in numerous studies, 
suggesting the possibility of observing cancer-related 
pathways in a non-invasive manner by DCE-MRI. For 
example, prognostic radiomic phenotypes of glioblas-
toma cells could be classified into four types based on the 
potential pathways of radiomic phenotypes, reflecting key 
biological processes related to immune regulation, tumor 
proliferation, therapeutic response and cellular func-
tions, all of which affect patient survival outcomes [30]; 
genes in the cell cycle pathway exhibited significant asso-
ciations with MRI imaging phenotypes [31]. The inho-
mogeneous enhancement phenotypes of tumor-adjacent 
parenchyma in MR imaging were associated with tumor 
necrosis signaling pathways [32]. However, there were 
still limited studies on the biological characteristics of 
imaging features related to LNM. For example, LNM was 
evaluated based on the deep learning features extracted 
from MRI images of 110 breast cancer patients, and the 
potential biological characteristics of deep learning fea-
tures were analyzed, among which fatty acid metabolism, 
insulin signaling pathway, phynylalanine metabolism, 
RNA degradation, and tyrosine metabolism were the 
first five related pathways [9]. WGCNA has proven to 
be a useful tool for identifying gene modules in radioge-
nomic analysis of breast tumors, where MRI phenotypes 
were associated with seven gene modules, including two 
radiomics phenotypes and six GoogLeNet phenotypes 

in this study. Referring to previous studies, DLR pheno-
types of tumor progression closely signaling pathways 
were analyzed [5], such as cell growth and death, immune 
response, cell communication, and signal transduction, 
and the results showed that image phenotypes were most 
closely related to immune response. This study was not 
consistent with the results of previous studies, mainly 
due to different analytical methods. Unlike previous stud-
ies on KEGG analysis of differentially related differential 
genes. This study mainly conducted a precise association 
analysis based on pathways closely related to tumors that 
had been organized.

In this study, radiomics also had inherent limita-
tions. First, the study was a small retrospective study 
that lacked the generalization effect of external cohort 
enhancement results despite the use of two cohorts from 
different sources. Second, although both cohorts used 
the 1.5T GE Medical System, there were potential dif-
ferences in image protocols between the two. Third, the 
clinical characteristics of the two cohorts were not iden-
tical and there may be uncertainty about other treat-
ments prior to pathologic determination of LNM. Fourth, 
although cross-scale associations were identified between 
radiomics and genomics, their causality was not been val-
idated in molecular or clinical trials. Finally, even if ICC 
was used to validate the robustness of phenotypes, the 
subjectivity of manual segmentation remained unavoid-
able, which may require a comparison between semi- and 
fully automated segmentation methods.

Conclusions
In conclusion, DLRN on DCE-MRI images provided a 
non-invasive and practical method to preoperatively 
predict breast cancer LNM, thus potentially identifying 
appropriate axillary treatment options for patients with 
early breast cancer. In addition, the DLRN MRI pheno-
types associated with LNM were associated with differ-
ent biological pathways. Depending on the underlying 
biological pathways, MRI phenotypes may reflect the 
profile of key biological processes related to tumor prolif-
eration, immune response, cellular communication, and 
signal transduction. These genetic and molecular acquisi-
tion functions contribute to improved clinical outcomes 
of patients. The future construction of prospective large-
sample DLRN models will be essential to confirm this 
finding.
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