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Abstract 

Background  1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great 
significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based 
on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI.

Methods  This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed 
a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied 
a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics 
score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each 
of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, 
independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-
deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified 
in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The 
predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and deci-
sion curve analysis. P < 0.05 was statistically significant.

Results  The radiomics model and the combined model both exhibited excellent performance on both the training 
and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These 
results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training 
and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predic-
tive performance from three neuroradiologists. In the training set, both the radiomic and combined models per-
formed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, 
with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly 
from experienced neuroradiologist.

Conclusions  Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. 
The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly 
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outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 
1p/19q co-deletion prediction of LGG.

Keywords  Low-grade glioma, 1p/19q Co-deletion, Prediction, Radiomics, Magnetic resonance imaging, Amide 
proton transfer weighted imaging, Diffusion weighted imaging

Introduction
Low-grade gliomas (LGGs) are invasive neoplasms that 
arise in the cerebral hemispheres of adults including dif-
fuse low-grade and intermediate-grade gliomas (World 
Health Organization [WHO] grades II and III) [1]. The 
fifth edition of the WHO Classification of Tumors of the 
Central Nervous System divides adult-type gliomas into 
three subtypes based on molecular markers: (1) astrocy-
toma, isocitrate dehydrogenase (IDH) -mutant, (2) oligo-
dendroglioma, IDH-mutant, and 1p/19q-codeleted, and 
(3) glioblastoma, IDH-wildtype [2].

Studies have shown that oligodendroglioma has the 
best prognosis between these three categories [3]. In 
addition, studies have illustrated that even small residual 
tumor has a negative impact on overall survival in 1p/19q 
intact astrocytoma than on 1p/19q co-deleted oligoden-
droglioma [4]. Therefore, the noninvasive assessment of 
the molecular subtype of 1p/19q is particularly valuable 
in guiding clinical decision making.

The radiological features of 1p/19q co-deleted tumors 
frequently display calcifications, and they predominantly 
occur in the frontal lobe, with a tendency to invade the 
gray matter. These tumors typically exhibit heterogene-
ous signal intensities on both T1- and T2-weighted MR 
imaging, often lacking a distinct tumor margin [5, 6].

With artificial intelligence technique applied to MRI, 
radiogenomics becoming a promising tool for discrimi-
nating genotype of gliomas in a non-invasive fashion. The 
largest amount of literature researches focused on con-
ventional MRI, such as T1-weighted imaging (T1WI), T2 
weighted imaging (T2WI) and fluid-attenuated inversion 
recovery (FLAIR) [7–9]. Advanced MRI techniques such 
as amide proton transfer weighted (APTw) or diffusion 
weighted imaging (DWI) remain less studied.

APTw imaging is one of the most developed branch of 
chemical exchange saturation transfer (CEST) imaging 
[10, 11]. Previous studies have demonstrated that APTw 
imaging has important value in detecting molecular bio-
markers in gliomas, such as IDH mutation, O6-methyl-
guanine methyltransferase (MGMT), and Lys-27-Met 
mutations in histone 3 genes (H3K27M) [12–16]. In the 
study by Su et al. [17], CEST imaging was used to iden-
tify 1p/19q co-deletion, and statistically significant indi-
ces included direct saturation of water (DSW), semi-solid 
magnetization transfer contrast (MTC), and MTRasym 
(2.0 ppm). However, the APT value was not statistically 

significant. In addition, a growing number of researches 
have shown that features extracted from DWI have pre-
dictive values in predicting of glioma molecular subtypes 
[18–20].

The aim of this retrospective study was to develop a 
radiogenomics method to predict 1p/19q co-deletion of 
LGG based on advanced and conventional MRI features.

Materials and methods
Patients
This study was approved by The Ethics Committee of the 
Zhujiang Hospital of Southern Medical University, and 
because its nature of retrospective study, the requirement 
of obtaining informed consent was waived. We retro-
spectively analyzed all patients from July 2017 to January 
2023, with pathologically diagnosed LGG according to 
the WHO 2016 Classification and completed preopera-
tive 3D APTw imaging evaluation. A total of 95 patients 
with initial diagnosed as LGG were reviewed (Fig. 1). The 
inclusion criteria were as follows: (1) LGG with histo-
pathological confirmation and known 1p/19q co-deletion 
status; (2) LGG with preoperative MRI including APTw, 
DWI and corresponding apparent diffusion coefficient 
(ADC) maps; (3) LGG without any previous treatment at 
initial diagnosis, and (4) patients over 18 years old. Cases 
with insufficient MRI data (n = 2), MRI data had intense 
motion artifacts (n = 1), patients with recurrent glioma 
(n = 2) were excluded from the study, rendering 90 LGGs 
in the dataset.

Evaluation of 1p/19q co‑deletion status
1p/19q co-deletion was assessed by a fluorescence in situ 
hybridization (FISH) locus specific identifier (LSI) probe 
sets 1p36/1q21 and 19q13/19p13. The assessment was 
consensus-classified by two pathologists over 6 and 
20 years of experience, respectively.

MRI acquisition
All patients were examined on two 3.0  T Philips scan-
ners (Ingenia Elition 3.0  T X and Ingenia 3.0  T; Philips 
Medical Systems, Best, The Netherlands) with a 20-chan-
nel head-neck coil. In addition to conventional ana-
tomic sequences, each MRI consists of 3D APTw, DWI 
and the corresponding ADC maps. All image process-
ing and reconstruction algorithms were automatically 
implemented on MRI scanning system. Among them, the 
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APT sequence encompasses two sets of images: one set 
is APTw images, and the other set is S0 images. Both sets 
of images possess the identical spatial resolution. The S0 
images represent the control signal intensity without sat-
uration, and the imaging is performed at a frequency off-
set of − 1560 ppm [11]. Detailed information on imaging 
parameters are available in the Supplementary Table  1, 
Additional File 1.

APTw and DWI imaging parameters
APTW imaging was implemented with a fat-suppressed, 
mDIXON 3D turbo spin-echo sequence, with RF satu-
ration powers of 2μT and a saturation duration of 2  s 
were used [11]. The detailed parameters were as fol-
lows: SENSE factor, 1.4; repetition time /echo time (TR/
TE) = 5900/8  ms; field of view (FOV) = 212 × 182 mm2; 
slice thickness = 5.4  mm; matrix = 120 × 102 (recon-
structed to 224 × 224); and voxel size = 1.80 × 1.80 × 5.40 
mm3 (0.95 × 0.95 × 5.40 mm3, reconstructed). A multi-
offset, multi-acquisition APTw imaging acquisi-
tion protocol was used [7 offsets =  ± 2.7, − 3.5, + 3.5 
(3), ± 4.28, − 1560 ppm; value in parentheses is the num-
ber of acquisitions, which was considered as one, if not 
specified]. The total scan time was 4 min 48 s.

DWI was implemented with a 2D single-shot echo-
planar imaging sequence. The detailed parameters were 
as follows: SENSE factor, 2; TR/TE = 3284/200  ms; 
field of view = 230 × 230 mm2; slice thickness = 4.4  mm; 

matrix = 152 × 122 (reconstructed to 256 × 256); and 
voxel size = 1.50 × 1.89 × 4.40 mm3 (0.90 × 0.90 × 4.40 
mm3, reconstructed). The ADC maps were calculated 
using b values of 0 and 1000 s/mm2 images.

MRI feature evaluation
Three neuroradiologists, labeled as Reader A (an experi-
enced neuroradiologist with 7  years of experience) and, 
Reader B and C (both being resident physicians with 3 
and 1 years of experience in neuroradiology respectively) 
independently evaluated the MR images while blinded to 
the pathology results. In cases of disagreement, a con-
sensus was reached. The evaluation encompassed the 
following aspects: gray matter involvement, calcifica-
tion, hemorrhage, tumor margin clarity (indistinct vs. 
sharp), and contrast enhancement. Due to limitations in 
data availability, contrast-enhanced T1-weighted imag-
ing (T1C) was not incorporated into this study. However, 
where such data were available, we did analyze whether 
lesions exhibited enhancement.

For each tumor, the readers were also asked to assess 
whether they believed it exhibited 1p/19q codeletion or 
was intact, providing a confidence score ranging from 1 
(indicating very unsure) to 5 (indicating very sure). This 
confidence score was then transformed into a prediction 
"score" by dividing it by 5 and multiplying the result by 1 
if the predicted label was 1p/19q codeleted, or by -1 if the 
predicted label was 1p/19q intact. This approach allowed 

Fig. 1  Flowchart of the study population
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for the calculation of an Area Under the Curve (AUC) for 
the manual classification [21].

Image preprocessing and tumor segmentation
A rigid co-registration was conducted between T1, T2, 
FLAIR, APT DWI images, and ADC map using SPM12 
(https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​spm12/). 
The reference volume for coregistration was the unsatu-
rated images (S0 image). Three-dimensional volume of 
interest (VOI) of whole-tumor were delineated by con-
sensus between two neuroradiologists (reader A and 
reader B with 7 and 3 years of experience in neuroradi-
ology), blinded to 1p/19q status, using the ITK-SNAP 
software (http://​www.​itksn​ap.​org/​pmwiki/​pmwiki.​php). 
Necrosis, cystic cavities, large vessels, calcification and 
hemorrhagic components were excluded.

Extraction of radiomic features
All radiomic features were extracted using an open-
source software package named FeAture Explorer 
software (version 0.5.5 https://​github.​com/​salan​668/​
FAE), which was built based on the PyRadiomics pack-
age (https://​github.​com/​Radio​mics/​pyrad​iomics) [22, 
23]. Features were extracted on original image and pre-
processed imaging, including wavelet transform, square, 
square root, logarithm, laplacian of gaussian, gradient 
and exponential. There are 7 feature types: shape fea-
tures, first-order features, gray level cooccurrence matrix 
(GLCM) features, gray level run length matrix (GLRLM) 
features, gray level size zone matrix (GLSZM) features, 
neighboring gray tone difference matrix (NGTDM) fea-
tures, and gray level dependence matrix (GLDM). A total 
of 8454 features were extracted from the MRI data and 
1409 features each from T1WI, T2WI, FLAIR, APTw, 
DWI and ADC map. A detailed information of the work-
flow is presented in the Fig. 2.

Feature selection
The training and test datasets were randomly selected 
from the dataset at a ratio of 8:2, where the clinical char-
acteristics in the two datasets were balanced. Stand-
ardization of radiomic features was performed using 
z-score intensity normalization and the upsampling was 
employed to remove the unbalance of the training data-
set. Then, a least absolute shrinkage and selection opera-
tor (LASSO) algorithm was employed in combination 
with fivefold cross-validation, which was aimed to iden-
tify the best features subset via the one-standard error of 
the minimum criteria.

Model development
A total of 3 models were built. Demographic factors and 
MRI features of the training set were compared between 
patients with 1p/19q codeleted and those with 1p/19q 
intact status using multivariable logistic regression anal-
ysis. The significant variables identified in this analysis 
were then used to build a clinical model. Radiomic model 
was established by using the final selected radiomics fea-
tures, and a radiomics score (Rad-score) was generated 
using a linear combination of the values of the selected 
features weighted for each patient. A combined model 
was established by employing logistic regression analysis 
with the significant variables previously identified, along 
with the Rad-score of the patient.

Model evaluation
The receiver operating characteristic (ROC) curves 
and area under the curve (AUC), sensitivity, specific-
ity, positive predictive value (PPV), negative predic-
tive value (NPV) and accuracy were calculated for all 
models. We used Delong’s test to compare the predic-
tion performance of the three models against the indi-
vidual readers (Reader A, B, and C). A p < 0.05 was 
considered significant. Decision curve analysis (DCA) 

Fig. 2  Workflow of the study

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.itksnap.org/pmwiki/pmwiki.php
https://github.com/salan668/FAE
https://github.com/salan668/FAE
https://github.com/Radiomics/pyradiomics
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was conducted to evaluate the clinical consequences of 
three models by plotting their net benefits across differ-
ent threshold probabilities [24].

Statistical analysis
SPSS v.26.0 (IBM SPSS Statistic Version19, Chicago, IL, 
USA) and R statistical software (v.4.2.2; https://​www.r-​
proje​ct.​org) were used for statistical analysis. We used 
independent samples t-test for quantitative data, and 
Wilcoxon test, chi-square test and Fisher’s exact test for 
qualitative data. A two-sided p-value of < 0.05 was con-
sidered significant.

Results
Clinical characteristics of patients
The characteristics of the patients in both the train-
ing and test datasets are outlined in Table  1. Within 
the training dataset, the variables of IDH1 status, gray 
matter involvement, calcification, and tumor margin 
exhibited statistically significant differences between 
the patients with 1p/19q codeletion and those with 
intact 1p/19q status. However, upon performing a 
multiple logistic regression analysis, only calcification 
and tumor margin clarity were identified as independ-
ent predictors in the clinical model. When evaluating 
the enhancement of lesion, after excluding four cases 
without T1C, there was no statistically significant 

Table 1  Clinical characteristics of the patients

Data are numbers of patients, with percentages in parentheses
a Data are medians, with inter-quartile range

Clinical factors Training set (n = 72) Test set (n = 18) p value

1p/19q co-del 1p/19q non co-del P value 1p/19q co-del 1p/19q non co-del p value

Number 26 (36.1) 46 (63.9) - 7 (38.9) 11(61.1) - 0.827

Age(years)a 42 (34–46) 43 (33–51) 0.560 52 (41–63) 43(33–59) 0.303 0.081

Sex 0.100 1.000 0.164

  Male 13 (50.0) 32 (69.6) 3 (42.9) 5 (45.5)

  Female 13 (50.0) 14 (30.4) 4 (57.1) 6 (54.5)

WHO grades 0.903 1.000 0.642

  Grade II 19 (73.1) 33 (71.7) 5 (71.4) 7 (63.6)

  Grade III 7 (26.9) 13 (28.3) 2 (28.6) 4 (36.4)

Histology 0.826

Oligodendroglioma 26 6

Astrocytoma 46 12

IDH < 0.001 0.316 0.642

  Mutation 25(96.2) 27(58.7) 6(85.7) 6(54.5)

  Wildtype 1(3.8) 19(41.3) 1(14.3) 5(45.5)

Gray matter involvement 0.003 0.637 0.039

  Absent 0(0) 12(26.1) 2(28.6) 5(45.5)

  Present 26(100) 34(73.9) 5(71.4) 6(54.5)

Calcification < 0.001 0.141 0.743

  Absent 9(34.6) 36(78.3) 3(42.9) 9(81.8)

  Present 17(65.4) 10(21.7) 4(57.1) 2(18.2)

Hemorrhage 1.000 1.000 0.316

  Absent 23(88.5) 40(87.0) 5(71.4) 9(81.8)

  Present 3(11.5) 6(13.0) 2(28.6) 2(18.2)

Tumor margin 0.009 0.316 0.820

  Indistinct 23(88.5) 27 (58.7) 6(85.7) 6(54.5)

  Sharp 3(11.5) 19(41.3) 1(14.3) 5(45.5)

Contrast enhancement 0.357 0.035 0.050

  Absent 13(50.0) 24(52.2) 2(28.6) 5(45.5)

  Present 12(46.2) 22(47.8) 2(28.6) 6(54.5)

  Not available 1(3.8) 0(0) 3(42.9) 0(0)

https://www.r-project.org
https://www.r-project.org
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difference in the enhancement patterns of tumors 
between the 1p/19q co-deleted and 1p/19q intact 
groups among the remaining 86 cases (p = 0.941). 
Among these cases, 44 (51.2%) cases showed no evi-
dence of enhancement.

Feature selection and development of a radiomics model
Overall, 8454 radiomic features were extracted from 
multiparametric MRI sequences (T1, T2, FLAIR, DWI, 
APTw images, and ADC maps) for each patient. After 
application of the LASSO regression model, 8 highly 
relevant radiomic features were selected to construct 
the radiomic model (Fig.  3, a and b, Table  2) and 
the coefficients of the features were demonstrated 
in Fig.  3, c. There was a significant difference in the 
Rad-score between 1p/19q co-deleted and 1p/19q non 
co-deleted gliomas in the both training and test sets 
(Fig.  4 a and b). The bar chart for Rad-score can be 
found in Fig. 4c.

Classification performance and model comparison 
with neuroradiologist
The performance of the three models classifying the 
molecular subtypes of LGG in the training and test sets 
are shown in Table 3. The results of the DeLong test com-
paring the predictive performance of the three models 
against neuroradiologists (Reader A, B, and C) in both 
the training and test sets are summarized in Table 4.

After performing the Delong analysis, it was found 
that there was no statistically significant difference in 
predictive performance between the clinical model and 
the three readers (A, B, C). In the training set. Both the 
radiomic model and the combined model performed sig-
nificantly better than the three readers. In the test set, the 
AUC values of the three models were higher than those 
of the three readers, but there was no statistically sig-
nificant difference compared to the experienced neuro-
radiologist (Reader A). On the other hand, the radiomics 
model significantly outperformed the resident physicians 
(Reader B and C). The ROC curves for the three models 

Fig. 3  LASSO coefficient profiles of the 8454 radiomics features. A coefficient profile plot was generated versus the selected log λ value using 
fivefold cross-validation (a). Optimal parameter selection in the LASSO model via 1-standard error criterion (b) The coefficients of 8 most relevant 
radiomics features and intercept (c)

Table 2  Radiomics feature selection results

Variables Radiomics feature name Variables Radiomics feature name

A T1_logarithm_glcm_ClusterShade E FLAIR_log.sigma.1.mm.3D_glcm_Correlation

B T1_log.sigma.1.mm.3D_glszm_ZoneEntropy F FLAIR_wavelet.HLL_glrlm_HighGrayLevelRunEmphasis

C T2_wavelet.LLL_glcm_InverseVariance G DWI_logarithm_gldm_DependenceVariance

D FLAIR_gradient_glszm_SmallAreaLowGrayLevelEmphasis H APT_wavelet.LHL_firstorder_Mean
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and the three neuroradiologists in both the training and 
test sets are presented in Fig. 5.

Meanwhile, the decision curves for molecular subtype 
classification among the three models demonstrate that 
the radiomic model and combined model have a bet-
ter overall net benefit compared to the clinical model 
(Fig. 6).

Discussion
In this study, we developed a radiogenomics method 
that predicts 1p/19q co-deletion status in LGG based on 
APTw, DWI, conventional sequences, as well as addi-
tional MRI features. Our results showed that the radiom-
ics model and the combined model exhibited excellent 

performance in distinguishing 1p/19q co-deletion status 
in both the training and test sets, with AUCs of 0.948 
and 0.966 for the training set, and 0.909 and 0.896 for the 
test set, respectively. Furthermore, the predictive per-
formance of our model was comparable to that of expe-
rienced neuroradiologist, significantly outperforming 
the diagnostic accuracy of resident physicians. 1p/19q 
co-deletion is associated with longer progression-free 
and overall survival, and better response to radiotherapy 
and chemotherapy [1, 25, 26]. For the suspected LGG 
patients, maximal safe surgical resection is advocated as 
the standard of care [27]. However, recent studies dem-
onstrated that gross total resection was not related with 
prolonged survival of patients with oligodendroglioma 

Fig. 4  Comparation of Rad-Score between glioma patients with 1p/19q co-deleted and 1p/19q non co-deleted in training (a) and test sets (b). The 
bar chart of Rad-score (c)
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[28, 29]. Therefore, preoperative identification of 1p/19q 
genotype could help with surgical planning.

There are growing number of studies using machine 
learning algorithms to predict molecular subtypes such 
as 1p/19q co-deletion and IDH mutations [7, 21, 30–33]. 
However, most of these studies only used conventional 
anatomical MR sequences because of the widespread 
usage. The 3D APTw and DWI in our datasets enabled 
us to extract molecular information from the tumor. 
Recently, two pioneering APTw-based radiomics studies 
have been undertaken, aiming to distinguish glioblas-
tomas from gliomas and brain metastases, as well as to 
discriminate treatment response from tumor progression 
[34, 35]. Our research findings indicate that APTw-based 
radiomics also holds value in predicting the 1p/19q co-
deletion in LGG.

In the training set, our findings indicate statistically sig-
nificant differences in calcifications, tumor margin clar-
ity, and gray matter involvement between gliomas with 
1p/19q co-deletion and those without, which is consist-
ent with prior studies. Notably, among these features, 
only calcifications and tumor margin clarity indepen-
dently predict 1p/19q co-deletion. This may be related to 

the relatively small sample size of our training dataset. In 
the radiomics model, our results demonstrate that among 
the three most contributing features two are texture fea-
tures from T2WI and DWI while the third is a histogram 
feature from APTw (Fig. 3, c). This finding could partly be 
explained by the fact that 1p/19q-codeleted glioma fre-
quently had heterogeneous signal intensity on T2WI [6, 
36], mixed/restricted diffusion characteristics [37], and 
concentration of endogenous cellular proteins in tissue, 
which can be reflected by radiomic features from APTw, 
varies across different molecular subtypes of gliomas 
[38].

Of all these models, the radiomics model achieved the 
best performance in the testing set, which means the 
radiomics model had strong predictive power for 1p/19q 
co-deletion. The clinical model demonstrates similar 
performance in both the training and testing sets with 
an AUC of 0.760 and 0.766. However, in the training set, 
the AUC value of the radiomics model is lower than that 
of the combined model. Contrastingly, in the testing set, 
the AUC value of the radiomics model is higher than that 
of the combined model. This observed difference could 
be attributed to the relatively smaller sample size of the 

Table 3  Diagnostic performance by different models

AUC​ area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value

Model AUC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Training set (n = 72)

  Clinical model 0.761 (0.946–0.871) 73.7 77.4 53.8 89.1 76.4

  Radiomics model 0.948 (0.909–0.987) 83.7 88.4 89.1 82.6 85.9

    Combined model 0.966(0.932–0.999) 87.5 90.9 91.3 87.0 89.1

    Reader A 0.804(0.723–0.886) 82.6 78.3 79.2 81.8 80.4

    Reader B 0.739(0.658–0.820) 93.5 54.3 67.2 89.3 73.9

    Reader C 0.674(0.588–0.760) 89.1 45.7 62.1 80.8 67.4

Test set (n = 18)

  Clinical model 0.766 (0.525–1) 80.0 76.9 57.1 90.9 77.8

  Radiomics model 0.909 (0.770–1) 80.0 76.9 57.1 90.9 77.8

  Combined model 0.896 (0.733–1) 80.0 76.9 57.1 90.9 77.8

    Reader A 0.740(0.523–0.957) 57.1 90.9 80.0 76.9 77.8

    Reader B 0.604(0.356–0.852) 57.1 63.6 50.0 70.0 61.1

    Reader C 0.513(0.262–0.764) 57.1 45.4 40.0 62.5 50.0

Table 4  P values in comparing AUC of Delong test

Training set Test set

Clinical model Radiomics model Combined model Clinical model Radiomics 
model

Combined 
model

Rader A 0.53 0.001 < 0.001 0.88 0.26 0.28

Rader B 0.76 < 0.001 < 0.001 0.38 0.03 0.053

Rader C 0.23 < 0.001 < 0.001 0.13 0.02 0.02
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testing set, indicating the need for a larger dataset evalu-
ation to draw more conclusive results.

Our study has several limitations. First, it was based on 
a single-center, retrospectively collected dataset, multi-
center data will be needed to allow external validation. 
Secondly, other medical images including perfusion-
weighted imaging (PWI) and computed tomography 
(CT) may provide extra functional and calcified informa-
tion; accordingly, we suggest that further work includes 
more imaging modalities to explore the performance 
of radiomic models. Finally, our work only focused on 
the prediction of the 1p/19q co-deletion genotype, the 
analysis of other molecular subtype, including IDH1/2, 

and CDKN2A/B will permit additional comprehensive 
understanding of the diffuse gliomas.

Conclusions
Radiomic features from APTw, DWI and conventional 
MRI sequences can preoperatively and non-invasively 
distinguish the 1p/19q co-deletion genotype in patients 
with LGG. The predictive performance of radiomics 
model was comparable to that of experienced neuro-
radiologist, significantly outperforming the diagnostic 
accuracy of resident physicians. These findings suggest 
that our radiogenomics approach has the potential to 

Fig. 5  ROC curves of the models and signatures in the training (a) and test set (b)

Fig. 6  Decision curve analysis for the three models
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become a valuable tool in clinical decision making for 
LGG patients.
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