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Abstract 

Objective  In radiation therapy, cancerous region segmentation in magnetic resonance images (MRI) is a critical 
step. For rectal cancer, the automatic segmentation of rectal tumors from an MRI is a great challenge. There are two 
main shortcomings in existing deep learning-based methods that lead to incorrect segmentation: 1) there are many 
organs surrounding the rectum, and the shape of some organs is similar to that of rectal tumors; 2) high-level features 
extracted by conventional neural networks often do not contain enough high-resolution information. Therefore, 
an improved U-Net segmentation network based on attention mechanisms is proposed to replace the traditional 
U-Net network.

Methods  The overall framework of the proposed method is based on traditional U-Net. A ResNeSt module 
was added to extract the overall features, and a shape module was added after the encoder layer. We then combined 
the outputs of the shape module and the decoder to obtain the results. Moreover, the model used different types 
of attention mechanisms, so that the network learned information to improve segmentation accuracy.

Results  We validated the effectiveness of the proposed method using 3773 2D MRI datasets from 304 patients. The 
results showed that the proposed method achieved 0.987, 0.946, 0.897, and 0.899 for Dice, MPA, MioU, and FWIoU, 
respectively; these values are significantly better than those of other existing methods.

Conclusion  Due to time savings, the proposed method can help radiologists segment rectal tumors effectively 
and enable them to focus on patients whose cancerous regions are difficult for the network to segment.

Significance  The proposed method can help doctors segment rectal tumors, thereby ensuring good diagnostic 
quality and accuracy.
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Introduction
Cancer is a worldwide problem that leads to death [1]. 
Rectal cancer [2] is one of the most common malignant 
cancers of the digestive tract. According to the GLOBO-
CAN 2020 Cancer Incidence and Mortality Assessment 
published by the International Agency for Research on 
Cancer [3], the incidence of rectal cancer ranks third of 
all kinds of cancers, and its mortality ranks second. With 
the impact of the aging population and unhealthy diet, 
rectal cancer tends to have the highest incidence and 
diagnostic rates. Generally, the period from normal intes-
tinal tissue to canceration is very long, approximately 
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15–18 years, which proves that rectal cancer is difficult to 
find in early time [4] and results in a high rate of missed 
diagnosis of approximately 25%. Rectal cancer is detected 
in its middle and late stages, and its 5-year survival rate 
is 10%. Therefore, it is imperative to assist doctors in the 
diagnosis and treatment of rectal cancer with the help of 
emerging technologies [5] such as deep learning and neu-
ral networks.

Medical imaging is not only the prerequisite of medical 
image analysis but also an important way to determine 
a patient’s treatment plan. Currently, several imaging 
modalities are used for the preoperative assessment of 
rectal cancer, including colonoscopy, intrarectal ultra-
sound (EUS), and MR imaging. MR imaging has become 
the first choice in the diagnosis and treatment of rec-
tal cancer because of its ability to provide patients with 
higher soft tissue contrast and because it has no radiation 
effects [6]. However, the automatic segmentation of colo-
rectal cancer tumors from MRI images remains a great 
challenge, as tumor size and shape vary greatly depend-
ing on the pathological features and physical condition of 
different patients, as shown in Fig. 1. In addition, because 
of the large number of organs around the lesion area and 
the similarity in shape between some organs and rec-
tal cancer tumors, the segmentation boundaries are not 
clear, which makes the segmentation of tumors more 
difficult.

Convolutional neural networks (CNNs) are the most 
representative deep learning algorithm, and they have 
achieved good results in the field of natural image analy-
sis. Unlike traditional feature extraction methods, CNNs 
use an end-to-end working principle, i.e., they auto-
matically extract task-related features from the input 
image and output corresponding results. Recently, with 
the increase in medical data and the improvement in 
computer power, the application of CNNs to the field 
of medical image analysis has received great attention 
from researchers and has become popular. Compared 

with manual segmentation, automatic segmentation [7] 
simplifies the workflow to rapidly process images with-
out manual operations. Some automatic segmentation 
algorithms have been presented, such as the atlas-based 
model [8], random field model [9], and transformation 
model [10]. These model-based methods perform well 
in prediction, but they are not widely used because they 
often use several patient-specific parameters. The learn-
ing-based model [11] is mainly applied to the automatic 
segmentation of fine features. However, none of these 
approaches can deal with certain complex clinical prob-
lems because of the sensitive features of medical data and 
the instability of network structures. Structure-based 
models [12] achieve automatic segmentation by using the 
prior knowledge of the original data, but they tend to fail 
in segmenting rectal tumors because of the complex and 
variable shapes of these tumors. Recently, with the devel-
opment of deep learning methods, they have performed 
well in the application of classification in medical fields 
[13, 14], which has led researchers to pay more attention 
to medical image segmentation [15, 16]. Many segmenta-
tion networks have emerged, including U-Net [17], Dee-
pLabv3 [18], and SegNet [19]. Many CNNs for semantic 
segmentation have been applied to medical images, such 
as for the segmentation of the liver [20], heart [21], glands 
[22], and eyes [23]. The field of medical segmentation is 
dominated by approaches that are based on deep learn-
ing, among which U-Net has shown the strongest perfor-
mance for the segmentation of medical images. However, 
U-Net has some drawbacks. For example, the structures 
of its encoders and decoders are simple; therefore, it has 
difficulty extracting deep features, and this leads to inac-
curate segmentation.

In addition, the attention mechanism allows the CNN to 
focus on the region of interest while suppressing features 
in the background region, thereby improving the model 
classification performance. Jie et  al. [24] developed a 
squeeze-and-excitation network (SENet) that determines 
the importance of each feature channel and assigns differ-
ent weight coefficients to each channel. Ibtehaz et al. [25] 
and Park et al. [26] proposed a practical and lightweight 
bottleneck attention module (BAM) that can be inte-
grated with any feed-forward CNN to allows the network 
to obtain a robust feature representation without add-
ing many network parameters. Woo et al. [27] proposed 
a convolutional BAM (CBAM) that enables information 
interaction within space and between channels. Recently, 
researchers integrated the attention module into medi-
cal image segmentation networks to improve segmenta-
tion performance. For example, Ni et  al. [28] enhanced 
the decoder with a newly designed attention module to 
emphasize the region of interest and improve the network 
representation of features. Yun et al. [29] proposed a dual 

Fig. 1  Typical examples of MR imaging of rectal cancer. Each MRI 
image of rectal cancer was from a different patient, and it was evident 
that the morphology of different rectal cancers varied greatly
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attention module to focus attention on the location infor-
mation of rectal tumors.

On the basis of the above findings, this study proposes 
a segmentation network based on the improved U-Net 
to achieve the automatic segmentation of rectal tumors 
from MRI. Our contributions are as follows:

1.	 Different network modules are combined in the tra-
ditional U-Net network to compose an advanced 
U-Net network that significantly improves segmenta-
tion performance.

2.	 Attention mechanisms are added to the improved 
U-Net to enable the network to focus on extracting 
the boundary features of rectal cancer during seg-
mentation.

Methodology
In this section, a new segmentation network based on 
U-Net is presented and its specific structure is explained.

Because connections across layers in the ResNet [30] 
can solve the problem of gradient disappearance, it is 
possible to build a deep neural network to improve 
the expressiveness of the model. In addition, CNNs 
have achieved great success in image recognition and 
segmentation in different application scenarios. Thus, 
based on the advantages of various neural networks, 

this study constructs a semantic segmentation network 
with layers and complex structures to meet the clinical 
needs of accurate cancerous region localization in rec-
tal cancer images.

The overall network architecture, which is inspired by 
the symmetrical structure of the classic U-Net network, 
is shown in Fig. 2. The ResNeSt [31] network is chosen 
as the encoder, which is mainly used to reduce the spa-
tial dimensionality of the image and extract abstract 
features. The compression path comprises four groups 
of coding network blocks. The deconvolution layer is 
chosen as the decoder to realize upsampling, whose 
main function is to recover the details and positional 
information of the object. The extended path is also 
composed of four groups of blocks and establishes a 
fast connection with the four blocks of the compressed 
path. In addition to the backbone of the network, 
we also use position and channel attention modules 
(CAMs) to produce a distinguished feature represen-
tation, using 1× 1 convolution kernels to complete 
the channel transformation operation. Simultaneously, 
dilated convolution and cross-layer stitching are both 
used to realize the multiscale feature capture of differ-
ent receptive fields. In the following, each component 
module and the related parameters of the network are 
described.

Fig. 2  Overall network architecture. The input is a 256× 256 2D rectal MRI gray image, and the output is a 256× 256 binary image that segments 
the cancerous region and background region based on pixels
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ResNeSt module
Split attention networks propose that due to the limited 
receptive field size and the lack of interaction between 
channels, the ResNeSt [31] network will perform well 
in image classification tasks, but it is not suitable for 
direct application to target detection, image segmen-
tation, and other tasks. In contrast to [32–34], the net-
work structures of split attention networks are designed 
and improved for specific tasks, while ResNeSt’s split 
attention blocks are backbone networks with general 
improvement functions and can be used as large-scale 
benchmarks for migration learning to apply cross-chan-
nel information to downstream tasks. As shown in Fig. 3, 
the feature graph with an input size of H ×W × C is 
divided into several groups, and the number of groups is 
determined by the cardinality hyperparameter. The num-
ber of splits in each group is determined by the hyper-
parameter radix. Taking a single grouping as an example, 
multiple splits are fuzed by element summation, and the 
global average pooling result is expressed as skc  , where 
k ∈ 1, 2, ...K  , c ∈ 1, 2, ...C/K  . The slice-weighted fusion 
means the k-th cardinality group can be expressed as 
follows:

The slice weight aki (c) is given by the following formula, 
Eq. 2:

The cardinality groups are spliced along the channel 
dimension: V = Concat{V 1,V 2, ...V k

} , and they perform 
a cross-layer connection summation operation that is 
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similar to the standard residual block: Y = V + f (X) . The 
encoder adopts the ResNeSt200 basic model and its pre-
training parameters. Super parameters K = 1 and R = 2 
ensure a good trade-off between speed, accuracy, and 
memory usage.

DBlock and decoder
The output size of the fourth group of ResNeSt blocks is 
1024 × 8× 8 and a 3× 3 convolutional kernel is used to 
realize multiscale transformation whose dilation rates are 
1, 2, 4, and 8. The advantage of dilated convolution is that 
it increases the receptive field without pooling the loss 
information, so that each convolution output contains a 
wide range of information. Multiscale context informa-
tion is conducive to meeting the segmentation require-
ments of large and small objects at the same time. As 
shown in Fig. 4a, the input performs four groups of con-
volution transformations with different dilation rates and 
concatenates with the original input to obtain the output 
of 512× 8× 8 . Then, the number of channels is restored 
to 1024 through the convolution operation.

The output of image segmentation prediction is pixel-
wise; therefore, the smaller image size after convolu-
tion and pooling should be upsampled to the original 
image size for prediction. Upsampling generally adopts a 
deconvolution operation. The previous dilated convolu-
tion operation makes each pixel prediction based on the 
larger receptive field information. As shown in Fig.  4b, 
the lowest output is decoded through the deconvolution 
decoding process to restore the size from 1024 × 8 × 8 to 
512 × 16 × 16. The steps of the three sampling processes 
are the same. Before decoding, the input establishes a 
quick connection with the corresponding block output of 
the compression path for element-wise summation.

Fig. 3  a Basic rest block structure is shown, with K cardinal groups of the same structure; b and c internal network structure of a single cardinal 
group is shown to intuitively explain the split attention working mechanism, where c = C/K
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Shape module
In essence, shape transformation still involves splicing fea-
ture maps at different layers. Its main advantage is that it 
fuzes features of different scales, dimensions, and stages in 
the output layer so that this layer contains richer informa-
tion and improves the segmentation accuracy. As shown in 
Fig. 4c, the input image is spliced with the four outputs, e1, 
e2, e3, and e4, in the coding stage and then fuzed with the 
decoder output to obtain the final output result. The sizes 
of e1, e2, e3, and e4 are smaller than 256× 256 , so it is nec-
essary to use the interpolate layer to realize the upsampling 
operation of bilinear interpolation and to use the 1× 1 
convolution kernel to realize the compression channel 
operation.

The gate module is used for the fusion of e1, e2, e3, and 
e4, as shown in Fig. 4d. Taking e4 + e3 as an example, the 
result of e4 after the compression channel is treated as an 
input feature and is represented by I , and the result of e3 
after the compression channel is treated as a gating fea-
ture and is represented by G . Gating and input features 
are spliced in the channel dimensions and transformed 
into a spatial weight matrix, represented by W  . The final 
output of the gate module is the result of the input fea-
tures corrected on the basis of spatial weight information, 
represented by I ′ . The formula is expressed as follows:

(3)I ′ = I(W + 1)

Attention mechanism: PAM and CAM
The position attention module (PAM) and CAM [35] 
improve the model accuracy of semantic segmentation 
tasks effectively and have good universality, so they are 
used in this study. Figure  5 shows a structure diagram of 
the PAM and CAM.

PAM uses the association between any two features to 
enhance the expression of their respective features. It has 
a global context, and local features are encoded by the 
broader context information. In addition, similar semantic 
features gain from each other, thereby improving intraclass 
compactness and semantic consistency. The expression is 
given by Eqs. 4 and 5:

where sji is the location-based correlation coefficient 
matrix, which measures the impact of the ith spatial loca-
tion on the jth spatial location. To meet the requirements 
for matrix multiplication, Bi and Cj perform flattening 
transformation and transposition operations on the H 
and W  dimensions. The value of the final output E in the 
position of j is obtained by adding the weighted sum of 

(4)sji =
exp(Bi · Cj)

∑N
i=1exp(Bi · Cj)

(5)Ej = α
∑N

i=1
(sjiDi)+ Aj

Fig. 4  a Dblock module: schematic diagram of multiscale information acquisition based on dilated convolution; b Decoder module: schematic 
diagram of the upsampling process based on deconvolution; c e1, e2, e3, and e4 obtain an output of 1 × 256 × 256 through shape transformation 
and fusion with the output feature map of the decoder to obtain the final segmentation prediction result based on pixels; d gate module: 
schematic of feature map fusion based on spatial weights
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all position features based on the correlation coefficient 
and the original feature value. α is the scale parameter 
that controls the degree to which weighted features cor-
rect the original features.

CAM uses the association between any two channel 
features to enhance the expression of their respective 
features. By mining the interdependence between chan-
nel mappings, strongly related channels are emphasized 
and the feature representation of specific semantics is 
improved. The biggest difference between CAM and 
squeeze-and-excitation (SE) is that the channel correla-
tion calculation uses the information from all elements 
in the channel instead of their global average pooling 
results. The expression is given by Eqs. 6 and 7:

where xji is the correlation coefficient matrix based on 
the channel, which measures the influence of the ith 
feature channel on the jth feature channel. To meet the 
requirements of matrix multiplication, Ai and Aj perform 
flattening transformation and transposition operations 
on the H and W  dimensions. The value of the final output 
E in the position of j is obtained by the addition of the 
weighted sum value of all channel features based on the 
correlation coefficient and the original feature value. β is 
the scale parameter that controls the degree to which the 
weighted features correct the original features.

Loss function
The loss function used in this study is the Dice loss, 
which is defined as in Eq. 8:

(6)xji =
exp(Ai · Aj)

∑C
i=1exp(Ai · Aj)

(7)Ej = β
∑C

i=1
(xjiAi)+ Aj ,

where G represents the tumor region in the label image 
and P represents the tumor region in the predicted 
image.

First, the centroid coordinates and the farthest tumor 
pixel coordinates of the colorectal tumor area should be 
calculated. Second, the tumor area is divided into three 
equal rings, called the inner, middle and outer rings. The 
Dice for each ring is then calculated. Finally, the loss 
function is defined as in Eq. 9:

where dicei represents the interval loss of a circular area 
from the inside out, and ki is the balance weight used to 
balance the relationship between the three losses. Due to 
the irregularity and nonconnectivity of tumors, it is dif-
ficult to segment pixels in the area of the tumor edge. 
Increasing the weight coefficient dice3 appropriately 
helps the model focus on learning the segmentation of 
challenging samples. Figure 6 shows the calculation prin-
ciple of the loss function, where the value of ki is a ran-
dom example.

Experimental preparation
Data
The data used in this study were obtained from Shanxi 
Provincial Cancer Hospital, and they include 3773 2D 
MR rectal cancer images obtained from 304 patients 
with the T2WI sequence. All MR rectal cancer images 
were collected using a 1.5-T GE Signa MR355 scanner. 
The MR images were converted to grayscale images with 
pixel values in the range of [0, 255]. The contents of the 
MR images were labeled by experienced radiologists. 150 
images were randomly selected from 3773 2D MR images 

(8)dice =
2|G ∩ P|

|G| + |P|

(9)loss = 1− (k1dice1 + k2dice2 + k3dice3),

Fig. 5  PAM and CAM are shown in figures (a) and (b)
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as the test set, and the remaining images were divided 
into the training and validation sets in a 9:1 ratio.

Data enhancement
The Albumentations package was used for data enhance-
ment, which included horizontal flip, vertical flip, 
random rotation by 90°, grid transformation, elastic 
transformation, and random gamma enhancement.

Implementation details
The overall network was programed using Python 3.6 
and the PyTorch framework. The experiments were per-
formed on a workstation equipped with an Intel Core 
i9-10900X CPU, four 32  GB RAM, GPUs, two GeForce 
RTX 3090 Turbo graphics cards, and the Ubuntu 18.04 
operating system. We used the MR rectal image dataset 
to evaluate our method and employed a ten-fold cross-
validation approach to validate the generalization per-
formance of the proposed model. In the experiments, we 
used the AdamW optimizer to optimize the parameters 
of the model at training time. Empirically, we set the 
model start parameters as follows: the initial learning rate 
was 1e − 4, weight_decay was 1e − 5, and batch_size was 
8. Furthermore, we used cosine annealing as the learning 
rate adjustment function. Moreover, the image size of the 
input network was 256 × 256.

Evaluation metrics
Dice
Dice is a measure of the similarity between the two sets. 
It is used to measure the similarity between network seg-
mentation results and the gold standard in the field of 
image segmentation, and is defined as follows:

(10)dice =
2|G ∩ P|

|G| + |P|

where G represents the tumor region in the label image 
and P represents the tumor region in the predicted 
image.

Mean pixel accuracy (MPA)
MPA is the average ratio of the number of correct classi-
fication pixels in each category to the number of all pixels 
in that category, as defined by Eq. 11:

where pi,j denotes the number of true values i that are 
predicted to be j, and k + 1 is the number of categories 
(including the empty categories).

Mean intersection over union (MIoU)
MIoU is the ratio of the intersection of the true and pre-
dicted values to the union of the true and predicted val-
ues, as defined by Eq. 12:

where TP, FP, TN, and FN represent the number of true 
positives, false positives, true negatives, and false nega-
tives, respectively.

Frequency‑weighted intersection over union (FWIoU)
FWIoU is the weighted sum of the IoU of each category, 
where the weights are calculated based on the frequency 
of each category. It is defined as in Eq. 13:

where pi,j denotes the number of true values i that are 
predicted to be j, and k + 1 is the number of categories 
(including empty categories).

Experimental results and visualization
Two types of experiments are presented in this section. 
The experimental results and visual information are pre-
sented more intuitively.

Ablation experiments
To evaluate the influence of the components in the 
improved U-Net network, ablation experiments were 
performed by adding, removing, or replacing those com-
ponents. To achieve a fair comparison, all ablation exper-
iments used the control variable method.

(11)MPA =

1

k + 1

∑k

i=0

pii
∑k

j=0pij

(12)MIoU =

TP

FP + FN + TP

(13)FWIoU =

1
∑k

i=0

∑k
j=0pij

∑k

i=0

pii
∑k

j=0pij
∑k

j=0pij +
∑k

j=0pji − pii

Fig. 6  Schematic of the loss calculation based on centroid interval 
division
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Impact of each added module
In this section, the impacts of each module in the pro-
posed U-Net network on the segmentation results are 
compared, as shown in Table 1a.

Each component was removed separately to carry out 
the experiments, and the experimental results were com-
pared. First, we tested the network when the ResNeSt 
module before the encoders were removed, and the 
results showed that Dice, MPA, MIoU, and FWIoU were 
0.923, 0.825, 0.676, and 0.681, respectively. Second, the 
Shape module between the output of the encoder and the 
final output was removed, and the results showed Dice, 
MPA, MIoU, and FWIoU values of 0.901, 0.811, 0.634, 
and 0.640, respectively. Finally, the attention mechanisms 
(PAM and CAM) in the improved U-Net were removed, 
and the Dice, MPA, MIoU, and FWIoU values were 
0.958, 0.786, 0.603, and 0.611, respectively. The results 
showed that the proposed network showed significant 
improvement. Consequently, all three components were 
significant when added to the construction of the new 
U-Net network.

Impacts of different attention mechanisms
Different attention mechanisms were added to the net-
work to evaluate their effects, as shown in Table 1b.

First, the SE method was selected, and the results 
achieved Dice, MPA, MIoU, and FWIoU values of 
0.935, 0.755, 0.645, and 0.611, respectively. Second, 
we selected the global context (GC) to obtain results 
for Dice, MPA, MIoU, and FWIoU values of 0.949, 
0.809, 0.774, and 0.740, respectively. Finally, we used 
the CBAM to get the results for Dice, MPA, MIoU, and 
FWIoU of 0.961, 0.902, 0.812, and 0.827, respectively. 
All of the above attention mechanisms showed poorer 
results than did PAM or CAM. Therefore, the PAM 
and CAM attention mechanisms were included in the 
network.

Impacts of various backbones
The replacement of the encoders with different back-
bones was compared, and the results are shown in 
Table 1c.

The results show that when the ResNeSt model is 
selected as the encoder, the Dice, MPA, MIoU, and 
FWIoU reach their highest values of 0.987, 0.946, 0.897, 
and 0.899, respectively, which indicate obvious advan-
tages over other backbones. Therefore, the ResNeSt 
model was adopted in the improved U-Net.

Impacts of the gate module
The gate module was introduced into the proposed 
U-Net. Its effect is presented in Table 1d.

It is obvious that when the gate module is included, 
Dice, MPA, MIoU, and FWIoU improve by 0.014, 0.024, 
0.042, and 0.038, respectively. Therefore, the addition of a 
gate module is necessary to improve the performance of 
the proposed segmentation networks.

Comparison with existing advanced models
In this study, an improved U-Net segmentation network 
based on attention mechanisms is proposed. In this sec-
tion, the differences in performance between the pro-
posed network and the existing advanced models are 
compared, and are shown in Table 1e.

The results of the experiments are summarized in 
Table 1e. The results in the bottom row are the best results 
obtained on the test set, which show that the proposed 
method is significantly better than all the other networks.

Visualization results
The comparison results related to the impact of each 
component to improve the proposed U-Net network are 
shown in Fig. 7a.

Table 1  Comparison results

Method Dice MAP MIoU FWIoU

(a) Comparison results for each component
  Without ResNeSt 0.923 0.825 0.776 0.781

  Without shape 0.901 0.811 0.734 0.740

  Without PAM&CAM 0.958 0.786 0.803 0.791

  Proposed U-Net 0.987 0.946 0.897 0.899
(b) Comparison results for different attention mechanisms
  With SE 0.935 0.755 0.645 0.611

  With GC 0.949 0.809 0.774 0.740

  With CBAM 0.961 0.902 0.812 0.827

  Proposed U-Net 0.987 0.946 0.897 0.899
(c) Comparison of the different backbones used in the proposed 
U-Net network
  ResNet34 0.935 0.665 0.398 0.423

  SEResNeXt50 0.951 0.805 0.734 0.752

  SENet-154 0.958 0.911 0.860 0.854

  ResNeSt 0.987 0.946 0.897 0.899
(d) Effect of the gate module
  Without a gate module 0.973 0.922 0.855 0.861

  With the gate module 0.987 0.946 0.897 0.899
(e) Results of comparison with existing advanced models
  DeepLabv3 [18] 0.938 0.745 0.570 0.566

  U-Net++ [36] 0.943 0.811 0.681 0.682

  U-Net+++ [37] 0.925 0.707 0.550 0.554

  GSCNN [38] 0.910 0.602 0.419 0.510

  ERFNet [39] 0.946 0.843 0.473 0.473

  ET-Net [40] 0.927 0.862 0.689 0.784

  Proposed U-Net 0.987 0.946 0.897 0.899
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In this figure, the Dice value for each image is shown 
in the upper-right corner. In addition, the different cases 
are presented in different colors, where the true positive 
is in green, the false positive is in red, and the false nega-
tive is in blue. The results show that the improved U-Net 
performed best.

Figure  7b shows the output results compared with 
the original input images, where green represents true 
positive, red represents false positive, and blue repre-
sents false negative. According to these results, the 
improved U-Net proposed in this study showed good 
performance in rectal cancer segmentation for 2D MR 
images.

Conclusion
In this study, an improved U-Net segmentation net-
work based on an attention mechanism is proposed. 
The segmentation performance was improved by add-
ing different training modules to the traditional U-Net, 
including the ResNeSt, Shape, gate, and visual mecha-
nism modules. This method can effectively address the 
challenge of rectal tumors being surrounded by many 
similar organs, as well as the problem of significant 
changes in cancer shape, and makes it easy to seg-
ment rectal tumors from the original MR images. The 
results showed that the proposed method achieves 
better results than do the other methods. Further-
more, the proposed method can be used to segment 
other medical images. In the future, methods in the 3D 
segmentation field should be studied to meet clinical 
requirements according to the clinical information.
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